PriorTrainer Classe
Definizione
Importante
Alcune informazioni sono relative alla release non definitiva del prodotto, che potrebbe subire modifiche significative prima della release definitiva. Microsoft non riconosce alcuna garanzia, espressa o implicita, in merito alle informazioni qui fornite.
Oggetto IEstimator<TTransformer> per la stima di una destinazione usando un modello di classificazione binaria.
public sealed class PriorTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>>, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>,Microsoft.ML.Trainers.PriorModelParameters>
type PriorTrainer = class
interface ITrainerEstimator<BinaryPredictionTransformer<PriorModelParameters>, PriorModelParameters>
interface IEstimator<BinaryPredictionTransformer<PriorModelParameters>>
Public NotInheritable Class PriorTrainer
Implements IEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters)), ITrainerEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters), PriorModelParameters)
- Ereditarietà
-
PriorTrainer
- Implementazioni
Commenti
Per creare questo formatore, usare Prior
Colonne di input e output
I dati della colonna dell'etichetta di input devono essere Boolean. I dati delle colonne delle funzionalità di input devono essere un vettore di dimensioni note di Single.
Questo formatore restituisce le colonne seguenti:
Nome colonna di output | Tipo di colonna | Descrizione | |
---|---|---|---|
Score |
Single | Punteggio non associato calcolato dal modello. | |
PredictedLabel |
Boolean | L'etichetta stimata, in base al segno del punteggio. Un punteggio negativo esegue il mapping a false e un punteggio negativo esegue il mapping a true . |
|
Probability |
Single | Probabilità calcolata calibrando il punteggio di avere true come etichetta. Il valore di probabilità è compreso nell'intervallo [0, 1]. |
Caratteristiche del formatore
Attività di Machine Learning | Classificazione binaria |
La normalizzazione è necessaria? | No |
La memorizzazione nella cache è necessaria? | No |
NuGet richiesto oltre a Microsoft.ML | Nessuno |
Esportabile in ONNX | Sì |
Dettagli algoritmo di training
Informazioni sulla distribuzione precedente per le etichette di classe 0/1 e gli output.
Vedere la sezione Vedere anche i collegamenti agli esempi di utilizzo.
Proprietà
Info |
Informazioni ausiliarie sul formatore in termini di capacità e requisiti. |
Metodi
Fit(IDataView) |
Esegue il training e restituisce un oggetto BinaryPredictionTransformer<TModel>. |
GetOutputSchema(SchemaShape) |
Restituisce l'oggetto SchemaShape dello schema che verrà prodotto dal trasformatore. Usato per la propagazione e la verifica dello schema in una pipeline. |
Metodi di estensione
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Aggiungere un "checkpoint di memorizzazione nella cache" alla catena di stima. Ciò garantisce che gli estimatori downstream vengano sottoposti a training in base ai dati memorizzati nella cache. È utile avere un checkpoint di memorizzazione nella cache prima che i formatori eseseguono più passaggi di dati. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Dato un estimator, restituire un oggetto wrapping che chiamerà un delegato una volta Fit(IDataView) chiamato. È spesso importante che uno strumento di stima restituisca informazioni sull'adattamento, motivo per cui il Fit(IDataView) metodo restituisce un oggetto tipizzato in modo specifico, anziché solo un oggetto generale ITransformer. Tuttavia, allo stesso tempo, IEstimator<TTransformer> vengono spesso formati in pipeline con molti oggetti, quindi potrebbe essere necessario creare una catena di estimatori tramite EstimatorChain<TLastTransformer> dove lo strumento di stima per il quale si vuole ottenere il trasformatore è sepolto in una posizione in questa catena. Per questo scenario, è possibile collegare un delegato che verrà chiamato una volta chiamato fit. |