하이퍼 매개 변수 튜닝을 SDK v2로 업그레이드

SDK v2에서는 튜닝 하이퍼 매개 변수가 작업으로 통합됩니다.

작업에는 형식이 있습니다. 대부분의 작업은 python main.py와 같은 command를 실행하는 명령 작업입니다. 작업에서 실행되는 것은 모든 프로그래밍 언어에 독립적이므로 bash 스크립트를 실행하고, python 인터프리터를 호출하고, 많은 curl 명령을 실행하는 등의 작업을 실행할 수 있습니다.

스윕 작업은 스윕 설정을 정의하고 명령의 스윕 메서드를 호출하여 시작할 수 있는 또 다른 형식의 작업입니다.

업그레이드하려면 하이퍼 매개 변수 튜닝 실험을 정의하고 SDK v2에 제출하기 위한 코드를 변경해야 합니다. 작업 내에서 실행하는 항목은 SDK v2로 업그레이드할 필요가 없습니다. 그러나 모델 학습 스크립트에서 Azure Machine Learning 관련 코드를 제거하는 것이 좋습니다. 이러한 분리를 통해 로컬과 클라우드 간에 더 쉽게 전환할 수 있으며 성숙한 MLOps에 대한 모범 사례로 간주됩니다. 실제로 이는 azureml.* 줄의 코드를 제거하는 것을 의미합니다. 모델 로깅 및 추적 코드를 MLflow로 바꿔야 합니다. 자세한 내용은 v2에서 MLflow를 사용하는 방법을 참조하세요.

이 문서에서는 SDK v1과 SDK v2의 시나리오를 비교합니다.

실험에서 하이퍼 매개 변수 튜닝 실행

  • SDK v1

    from azureml.core import ScriptRunConfig, Experiment, Workspace
    from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal
    from azureml.train.hyperdrive import choice, loguniform
    
    dataset = Dataset.get_by_name(ws, 'mnist-dataset')
    
    # list the files referenced by mnist dataset
    dataset.to_path()
    
    #define the search space for your hyperparameters
    param_sampling = RandomParameterSampling(
        {
            '--batch-size': choice(25, 50, 100),
            '--first-layer-neurons': choice(10, 50, 200, 300, 500),
            '--second-layer-neurons': choice(10, 50, 200, 500),
            '--learning-rate': loguniform(-6, -1)
        }
    )
    
    args = ['--data-folder', dataset.as_named_input('mnist').as_mount()]
    
    #Set up your script run
    src = ScriptRunConfig(source_directory=script_folder,
                          script='keras_mnist.py',
                          arguments=args,
                          compute_target=compute_target,
                          environment=keras_env)
    
    # Set early stopping on this one
    early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1)
    
    # Define the configurations for your hyperparameter tuning experiment
    hyperdrive_config = HyperDriveConfig(run_config=src,
                                         hyperparameter_sampling=param_sampling,
                                         policy=early_termination_policy,
                                         primary_metric_name='Accuracy',
                                         primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
                                         max_total_runs=20,
                                         max_concurrent_runs=4)
    # Specify your experiment details                                     
    experiment = Experiment(workspace, experiment_name)
    
    hyperdrive_run = experiment.submit(hyperdrive_config)
    
    #Find the best model
    best_run = hyperdrive_run.get_best_run_by_primary_metric()
    
  • SDK v2

    from azure.ai.ml import MLClient
    from azure.ai.ml import command, Input
    from azure.ai.ml.sweep import Choice, Uniform, MedianStoppingPolicy
    from azure.identity import DefaultAzureCredential
    
    # Create your command
    command_job_for_sweep = command(
        code="./src",
        command="python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{inputs.learning_rate}} --boosting ${{inputs.boosting}}",
        environment="AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu@latest",
        inputs={
            "iris_csv": Input(
                type="uri_file",
                path="https://azuremlexamples.blob.core.windows.net/datasets/iris.csv",
            ),
            #define the search space for your hyperparameters
            "learning_rate": Uniform(min_value=0.01, max_value=0.9),
            "boosting": Choice(values=["gbdt", "dart"]),
        },
        compute="cpu-cluster",
    )
    
    # Call sweep() on your command job to sweep over your parameter expressions
    sweep_job = command_job_for_sweep.sweep(
        compute="cpu-cluster", 
        sampling_algorithm="random",
        primary_metric="test-multi_logloss",
        goal="Minimize",
    )
    
    # Define the limits for this sweep
    sweep_job.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200)
    
    # Set early stopping on this one
    sweep_job.early_termination = MedianStoppingPolicy(delay_evaluation=5, evaluation_interval=2)
    
    # Specify your experiment details
    sweep_job.display_name = "lightgbm-iris-sweep-example"
    sweep_job.experiment_name = "lightgbm-iris-sweep-example"
    sweep_job.description = "Run a hyperparameter sweep job for LightGBM on Iris dataset."
    
    # submit the sweep
    returned_sweep_job = ml_client.create_or_update(sweep_job)
    
    # get a URL for the status of the job
    returned_sweep_job.services["Studio"].endpoint
    
    # Download best trial model output
    ml_client.jobs.download(returned_sweep_job.name, output_name="model")
    

파이프라인에서 하이퍼 매개 변수 튜닝 실행

  • SDK v1

    
    tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')
    data_folder = dataset.as_mount()
    src = ScriptRunConfig(source_directory=script_folder,
                          script='tf_mnist.py',
                          arguments=['--data-folder', data_folder],
                          compute_target=compute_target,
                          environment=tf_env)
    
    #Define HyperDrive configs
    ps = RandomParameterSampling(
        {
            '--batch-size': choice(25, 50, 100),
            '--first-layer-neurons': choice(10, 50, 200, 300, 500),
            '--second-layer-neurons': choice(10, 50, 200, 500),
            '--learning-rate': loguniform(-6, -1)
        }
    )
    
    early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1)
    
    hd_config = HyperDriveConfig(run_config=src, 
                                 hyperparameter_sampling=ps,
                                 policy=early_termination_policy,
                                 primary_metric_name='validation_acc', 
                                 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, 
                                 max_total_runs=4,
                                 max_concurrent_runs=4)
    
    metrics_output_name = 'metrics_output'
    metrics_data = PipelineData(name='metrics_data',
                                datastore=datastore,
                                pipeline_output_name=metrics_output_name,
                                training_output=TrainingOutput("Metrics"))
    
    model_output_name = 'model_output'
    saved_model = PipelineData(name='saved_model',
                                datastore=datastore,
                                pipeline_output_name=model_output_name,
                                training_output=TrainingOutput("Model",
                                                               model_file="outputs/model/saved_model.pb"))
    #Create HyperDriveStep
    hd_step_name='hd_step01'
    hd_step = HyperDriveStep(
        name=hd_step_name,
        hyperdrive_config=hd_config,
        inputs=[data_folder],
        outputs=[metrics_data, saved_model])                             
    
    #Find and register best model
    conda_dep = CondaDependencies()
    conda_dep.add_pip_package("azureml-sdk")
    
    rcfg = RunConfiguration(conda_dependencies=conda_dep)
    
    register_model_step = PythonScriptStep(script_name='register_model.py',
                                           name="register_model_step01",
                                           inputs=[saved_model],
                                           compute_target=cpu_cluster,
                                           arguments=["--saved-model", saved_model],
                                           allow_reuse=True,
                                           runconfig=rcfg)
    
    register_model_step.run_after(hd_step)
    
    #Run the pipeline
    pipeline = Pipeline(workspace=ws, steps=[hd_step, register_model_step])
    pipeline_run = exp.submit(pipeline)
    
    
  • SDK v2

    train_component_func = load_component(path="./train.yml")
    score_component_func = load_component(path="./predict.yml")
    
    # define a pipeline
    @pipeline()
    def pipeline_with_hyperparameter_sweep():
        """Tune hyperparameters using sample components."""
        train_model = train_component_func(
            data=Input(
                type="uri_file",
                path="wasbs://datasets@azuremlexamples.blob.core.windows.net/iris.csv",
            ),
            c_value=Uniform(min_value=0.5, max_value=0.9),
            kernel=Choice(["rbf", "linear", "poly"]),
            coef0=Uniform(min_value=0.1, max_value=1),
            degree=3,
            gamma="scale",
            shrinking=False,
            probability=False,
            tol=0.001,
            cache_size=1024,
            verbose=False,
            max_iter=-1,
            decision_function_shape="ovr",
            break_ties=False,
            random_state=42,
        )
        sweep_step = train_model.sweep(
            primary_metric="training_f1_score",
            goal="minimize",
            sampling_algorithm="random",
            compute="cpu-cluster",
        )
        sweep_step.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200)
    
        score_data = score_component_func(
            model=sweep_step.outputs.model_output, test_data=sweep_step.outputs.test_data
        )
    
    
    pipeline_job = pipeline_with_hyperparameter_sweep()
    
    # set pipeline level compute
    pipeline_job.settings.default_compute = "cpu-cluster"
    
    # submit job to workspace
    pipeline_job = ml_client.jobs.create_or_update(
        pipeline_job, experiment_name="pipeline_samples"
    )
    pipeline_job
    

SDK v1 및 SDK v2의 주요 기능 매핑

SDK v1의 기능 SDK v2의 대략적인 매핑
HyperDriveRunConfig() SweepJob()
하이퍼드라이브 패키지 스윕 패키지

다음 단계

자세한 내용은 다음을 참조하세요.