다음을 통해 공유


IidSpikeEstimator 클래스

정의

적응형 커널 밀도 예측에 따라 독립적으로 동일하게 분산된(즉, d.d.) 시계열에서 신호 스파이크를 검색합니다.

public sealed class IidSpikeEstimator : Microsoft.ML.Data.TrivialEstimator<Microsoft.ML.Transforms.TimeSeries.IidSpikeDetector>
type IidSpikeEstimator = class
    inherit TrivialEstimator<IidSpikeDetector>
Public NotInheritable Class IidSpikeEstimator
Inherits TrivialEstimator(Of IidSpikeDetector)
상속

설명

이 추정기를 만들려면 DetectIidSpike를 사용합니다.

입력 및 출력 열

입력 열이 하나만 있습니다. 입력 열은 값이 Single 시계열의 타임스탬프 값을 나타내는 위치여야 합니다Single.

3개의 요소가 있는 벡터인 열을 생성합니다. 출력 벡터에는 경고 수준(0이 아닌 값은 변경 지점을 의미함), 점수 및 p 값이 순차적으로 포함됩니다.

예측 도구 특성

이 추정기는 매개 변수를 학습하기 위해 데이터를 확인해야 합니까? 아니요
입력 열 데이터 형식 Single
출력 열 데이터 형식 의 3개 요소 벡터Double
ONNX로 내보낼 수 있습니다. 아니요

예측 도구 특성

기계 학습 작업 이상 감지
정규화가 필요한가요? 아니요
캐싱이 필요한가요? 아니요
Microsoft.ML 외에도 필요한 NuGet Microsoft.ML.TimeSeries

학습 알고리즘 세부 정보

이 트레이너는 시계열에서 수집된 데이터 요소가 동일한 배포(독립적으로 동일하게 분산됨)에서 독립적으로 샘플링된다고 가정합니다. 따라서 현재 타임스탬프의 값을 예상한 다음 타임스탬프의 값으로 볼 수 있습니다. 타임스탬프 $t-1$에서 관찰된 값이 $p$이면 $t$ 타임스탬프의 예측 값도 $p$입니다.

변칙 득점자

타임스탬프의 원시 점수가 계산되면 변칙 점수 구성 요소에 공급되어 해당 타임스탬프에서 최종 변칙 점수를 계산합니다.

p-value를 기반으로 하는 스파이크 검색

p-값 점수는 현재 점이 이상값(스파이크라고도 함)인지 여부를 나타냅니다. 값이 낮을수록 급증할 가능성이 높습니다. p-value 점수는 항상 $[0, 1]$입니다.

이 점수는 원시 점수 분포에 따라 현재 계산된 원시 점수의 p 값입니다. 여기서 분포는 가장 최근의 원시 점수 값을 기준으로 기록에서 특정 깊이까지 예측됩니다. 더 구체적으로, 이 분포는 적응 대역폭의 가우스 커널커널 밀도 추정을 사용하여 추정됩니다.

p-value 점수가 $1 - \frac{\text{confidence}}{100}$를 초과하는 경우 관련 타임스탬프는 스파이크 검색에서 0이 아닌 경고 값을 가져올 수 있습니다. 즉, 스파이크 지점이 검색됩니다. $\text{confidence}$는 DetectIidSpikeDetectSpikeBySsa의 서명에 정의되어 있습니다.

사용 예제에 대한 링크는 참고 섹션을 참조하세요.

메서드

Fit(IDataView)

적응형 커널 밀도 예측에 따라 독립적으로 동일하게 분산된(즉, d.d.) 시계열에서 신호 스파이크를 검색합니다.

(다음에서 상속됨 TrivialEstimator<TTransformer>)
GetOutputSchema(SchemaShape)

변환기에 대한 스키마 전파입니다. 입력 스키마가 제공된 스키마와 같으면 데이터의 출력 스키마를 반환합니다.

확장 메서드

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

추정기 체인에 '캐싱 검사점'을 추가합니다. 이렇게 하면 다운스트림 추정기가 캐시된 데이터에 대해 학습됩니다. 여러 데이터 전달을 수행하는 트레이너 앞에 캐싱 검사점을 두는 것이 유용합니다.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

추정기가 지정된 경우 대리자를 호출한 후 Fit(IDataView) 호출되는 래핑 개체를 반환합니다. 예측 도구가 적합한 항목에 대한 정보를 반환하는 것이 중요한 경우가 많습니다. 따라서 Fit(IDataView) 메서드는 일반 ITransformer개체가 아닌 특별히 형식화된 개체를 반환합니다. 그러나 동시에 IEstimator<TTransformer> 개체가 많은 파이프라인으로 형성되는 경우가 많으므로 변압기를 가져올 추정기가 이 체인의 어딘가에 묻혀 있는 위치를 통해 EstimatorChain<TLastTransformer> 추정기 체인을 빌드해야 할 수도 있습니다. 이 시나리오에서는 fit이 호출되면 호출되는 대리자를 이 메서드를 통해 연결할 수 있습니다.

적용 대상

추가 정보