다음을 통해 공유


OneLake, 데이터용 OneDrive

OneLake는 전체 조직을 위한 논리적 단일 통합 데이터 레이크입니다. OneDrive와 마찬가지로 OneLake는 모든 Microsoft Fabric 테넌트에 자동으로 제공되며, 모든 분석 데이터를 위한 단일 위치가 되도록 설계되었습니다.

OneLake는 고객에게 다음을 제공합니다.

  • 전체 조직에 대한 하나의 데이터 레이크
  • 여러 분석 엔진에서 사용할 데이터 복사본 1

전체 조직을 위한 하나의 데이터 레이크

OneLake 이전에는 많은 조직에서 여러 비즈니스 그룹에 대해 여러 레이크를 만들었으며 이로 인해 여러 리소스를 관리하는 데 추가 오버헤드가 발생했습니다. OneLake는 협업을 개선하여 이러한 문제를 제거합니다.

  • 모든 패브릭 테넌트는 자동으로 OneLake(원레이크)가 제공됩니다.
  • OneLake를 여러 개 만들거나 OneLake를 삭제할 수 없습니다.
  • 프로비전하거나 관리할 추가 리소스 없음

이러한 단순성은 조직이 단일 통합 데이터 레이크에서 공동 작업하는 데 도움이 됩니다.

기본적으로 협업에 대한 분산 소유권을 사용하여 제어

패브릭 데이터에 대한 최상위 수준의 조직 및 거버넌스는 테넌트입니다. OneLake에 도착하는 모든 데이터는 보안, 규정 준수 및 데이터 관리에 대한 테넌트 수준 정책에 의해 자동으로 보호됩니다.

테넌트 내에서 협업은 작업 영역 내에서 발생합니다. 원하는 수의 작업 영역을 만들어 데이터를 구성할 수 있습니다. 작업 영역을 사용하면 조직의 여러 부분에서 소유권 및 액세스 정책을 배포할 수 있습니다. 각 작업 영역은 특정 지역에 연결되고 별도로 청구되는 용량의 일부입니다.

OneLake의 함수 및 구조를 보여 주는 다이어그램

작업 영역 내에서 데이터 항목을 통해 모든 데이터를 만들고 액세스합니다. Office에서 Word, Excel 및 PowerPoint 파일을 OneDrive에 저장하는 방법과 비슷하게 Fabric은 레이크하우스, 웨어하우스 및 기타 항목을 OneLake에 저장합니다. 각 항목 유형은 레이크하우스의 Apache Spark 개발자 환경과 같이 다양한 가상 사용자를 위한 맞춤형 환경을 제공합니다.

개방형 표준 및 형식을 기반으로 빌드

OneLake는 ADLS(Azure Data Lake Storage) Gen2를 기반으로 하여 빌드되며, 구조화되거나 구조화되지 않은 모든 형식의 파일을 지원할 수 있습니다. Data Warehouse 및 레이크하우스와 같은 모든 Fabric 데이터 항목은 해당 데이터를 Delta Parquet 형식으로 OneLake에 자동으로 저장합니다. 데이터 엔지니어가 Apache Spark를 사용하여 데이터를 레이크하우스에 로드한 다음, SQL 개발자가 T-SQL을 사용하여 데이터를 완전한 트랜잭션 Data Warehouse에 로드하는 경우 둘 다 동일한 데이터 레이크에 참여합니다. OneLake는 모든 표 형식 데이터를 Delta Parquet 형식으로 저장합니다.

OneLake는 Azure Databricks를 포함하여 기존 ADLS Gen2 애플리케이션과 호환되도록 동일한 ADLS Gen2 API 및 SDK를 지원합니다. 전체 조직에 대한 하나의 큰 ADLS 스토리지 계정인 것처럼 OneLake에서 데이터를 처리할 수 있습니다. 모든 작업 영역은 해당 스토리지 계정 내의 컨테이너로 표시되고, 다른 데이터 항목은 해당 컨테이너 내의 폴더로 표시됩니다.

API 및 SDK를 사용하여 OneLake 데이터에 액세스하는 방법을 보여 주는 다이어그램

API 및 엔드포인트에 대한 자세한 내용은 OneLake 액세스 및 API를 참조하세요. Azure와의 OneLake 통합 예제는 Azure Synapse Analytics, Azure Storage Explorer, Azure DatabricksAzure HDInsight 문서를 참조하세요.

Windows용 OneLake 파일 탐색기

Windows용 OneLake 파일 탐색기를 사용하여 Windows에서 OneLake 데이터를 탐색할 수 있습니다. Office에서와 마찬가지로 모든 작업 영역과 데이터 항목을 탐색하여 파일을 쉽게 업로드, 다운로드 또는 수정할 수 있습니다. OneLake 파일 탐색기는 데이터 레이크 작업을 간소화하여 기술에 익숙하지 않은 비즈니스 사용자도 사용할 수 있도록 합니다.

자세한 내용은 OneLake 파일 탐색기를 참조하세요.

하나의 데이터 복사본

OneLake는 데이터 이동 또는 중복 없이 단일 데이터 복사본에서 가능한 한 많은 가치를 제공하는 것을 목표로 합니다. 데이터를 다른 엔진과 함께 사용하거나 여러 원본의 데이터를 분석하기 위해 데이터를 복사할 필요가 없습니다.

데이터 이동 없이 바로 가기에서 데이터를 도메인 간에 연결

바로 가기는 다른 파일 위치에 저장된 데이터에 대한 참조입니다. 이러한 파일 위치는 동일한 작업 영역 내 또는 다른 작업 영역, OneLake 내 또는 ADLS, S3 또는 Dataverse와 같은 OneLake 외부에 있을 수 있습니다. 위치에 관계없이 바로 가기는 파일과 폴더를 로컬로 저장한 것처럼 보이게 합니다.

바로 가기를 사용하면 조직에서 불필요하게 정보를 이동하고 복제하지 않고도 사용자와 애플리케이션 간에 데이터를 공유할 수 있습니다. 팀이 별도의 작업 영역에서 독립적으로 작업하는 경우 바로 가기를 사용하면 사용자의 특정 요구 사항에 맞출 수 있도록 여러 비즈니스 그룹과 도메인의 데이터를 가상 데이터 제품으로 결합할 수 있습니다.

바로 가기가 작업 영역 및 항목 간에 데이터를 연결하는 방법을 보여 주는 다이어그램

바로 가기를 사용하는 방법에 대한 자세한 내용은 OneLake 바로 가기를 참조하세요.

여러 분석 엔진에 데이터 연결

데이터는 종종 단일 엔진에 최적화되므로 여러 애플리케이션에 동일한 데이터를 다시 사용하는 것이 어렵습니다. Fabric을 사용하면 다양한 분석 엔진(T-SQL, Apache Spark, Analysis Services 등)이 열려 있는 Delta Parquet 형식으로 데이터를 저장하여 여러 엔진에서 동일한 데이터를 사용할 수 있습니다.

다른 엔진과 함께 사용할 때 데이터를 복사하거나, 데이터가 있는 위치 때문에 특정 엔진에 구속되지 않아도 됩니다. 예를 들어 완전 트랜잭션 데이터 웨어하우스를 빌드하는 SQL 엔지니어 팀을 상상해 보십시오. T-SQL 엔진과 T-SQL의 모든 기능을 사용하여 테이블을 만들고, 데이터를 변환하고, 데이터를 테이블에 로드할 수 있습니다. 데이터 과학자가 이 데이터를 사용하려는 경우 특별한 Spark/SQL 드라이버를 사용할 필요가 없습니다. OneLake는 모든 데이터를 Delta Parquet 형식으로 저장합니다. 데이터 과학자는 Spark 엔진과 오픈 소스 라이브러리의 모든 기능을 데이터에 직접 사용할 수 있습니다.

비즈니스 사용자는 Analysis Services 엔진의 Direct Lake 모드를 사용하여 OneLake 위에 직접 Power BI 보고서를 빌드할 수 있습니다. Analysis Services 엔진은 Power BI 의미 체계 모델을 구동하며 항상 가져오기 및 직접 쿼리라는 두 가지 데이터 액세스 모드를 제공합니다. 이 세 번째 모드인 Direct Lake 모드는 최상의 가져오기 및 직접 쿼리를 결합하여 데이터를 복사할 필요 없이 모든 가져오기 속도를 제공합니다. 자세한 내용은 Direct Lake를 참조하세요.

Spark를 사용하여 데이터를 로드하고, T-SQL을 사용하여 쿼리하고, Power BI 보고서에서 데이터를 보는 예제 다이어그램

다음 단계

OneLake 사용을 시작할 준비가 되셨나요? 시작하는 방법은 다음과 같습니다.