PyTorch 및 Windows ML를 사용한 이미지 분류
이 자습서는 PyTorch를 사용하여 이미지 분류 신경망 모델을 학습하고, 모델을 ONNX 형식으로 내보내고, Windows 디바이스에서 로컬로 실행되는 Windows Machine Learning 애플리케이션에 배포하는 방법을 보여줍니다.
Python 및 C# 프로그래밍 언어에 대한 기본 지식이 필요합니다. 기계 학습의 이전 환경이 권장되지만 필수는 아닙니다.
설치로 바로 이동하려면 PyTorch 설치를 참조하세요.
PyTorch를 이미 설정한 경우 데이터를 가져와서 모델을 학습하는 프로세스를 시작합니다.
데이터를 사용할 준비가 되면 모델 학습을 시작한 다음, ONNX 형식으로 변환할 수 있습니다.
ONNX 모델이 있고 WinML 앱을 처음부터 만드는 방법을 알아보려면 모델 배포로 이동합니다.
참고 항목
원하는 경우 Windows Machine Learning 샘플 리포지토리를 복제하고 이 자습서의 완성된 코드를 실행할 수 있습니다. 여기에서 PyTorch 교육 솔루션 또는 여기에서 완성된 Windows ML 앱을 찾을 수 있습니다. PyTorch 파일을 사용하는 경우 실행하기 전에 관련 PyTorch 인터프리터를 설정했는지 확인하세요.
시나리오
이 자습서에서는 모든 Windows 디바이스에서 실행할 수 있는 기계 학습 이미지 분류 애플리케이션을 만듭니다. 모델은 패턴 유형을 인식하도록 학습되고 선택한 학습 세트에서 10개의 이미지 레이블을 분류합니다.
PyTorch - 모델 교육을 위한 사전 요구 사항:
PyTorch는 다음 Windows 배포에서 지원됩니다.
- Windows 7 이상. Windows 10 이상 권장.
- Windows Server 2008 R2 이상
Windows에서 Pytorch를 사용하려면 Python 3.x가 설치되어 있어야 합니다. Python 2.x는 지원되지 않습니다.
Windows ML 앱 배포를 위한 사전 요구 사항
WinML 앱을 만들고 배포하려면 다음이 필요합니다.
- Windows 10 버전 1809(빌드 17763) 이상. 실행 명령
(Windows logo key + R)
을 통해winver
를 실행하여 빌드 버전 번호를 확인할 수 있습니다. - 빌드 17763 이상용 Windows SDK. SDK는 여기에서 다운로드할 수 있습니다.
- Visual Studio 2017 버전 15.7 이상. Visual Studio 2019를 사용하는 것이 좋으며, VS2017을 사용하는 경우 이 자습서의 일부 스크린샷이 다를 수 있습니다. Visual Studio는 여기에서 다운로드할 수 있습니다.
- Windows ML 코드 생성기(mlgen) Visual Studio 확장. VS 2019 또는 VS 2017용으로 다운로드합니다.
- 또한 PC에서 개발자 모드를 사용하도록 설정해야 합니다.
참고 항목
Windows ML API는 최신 버전의 Windows 10(1809 이상) 및 Windows Server 2019에 내장되어 있습니다. 대상 플랫폼이 이전 버전의 Windows인 경우 WinML 앱을 재배포 가능한 NuGet 패키지(Windows 8.1 이상)로 이식할 수 있습니다.
다음 단계
PyTorch를 설치하고 환경을 구성하여 시작합니다.
Important
PyTorch, PyTorch 로고 및 모든 관련 마크는 Facebook, Inc.의 상표입니다.