Delen via


TimeSeriesCatalog.DetectIidChangePoint Method

Definition

Overloads

DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double)

Create IidChangePointEstimator, which predicts change points in an independent identically distributed (i.i.d.) time series based on adaptive kernel density estimations and martingale scores.

DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double)
Obsolete.

Create IidChangePointEstimator, which predicts change points in an independent identically distributed (i.i.d.) time series based on adaptive kernel density estimations and martingale scores.

DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double)

Create IidChangePointEstimator, which predicts change points in an independent identically distributed (i.i.d.) time series based on adaptive kernel density estimations and martingale scores.

public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * double * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator

Parameters

catalog
TransformsCatalog

The transform's catalog.

outputColumnName
String

Name of the column resulting from the transformation of inputColumnName. The column data is a vector of Double. The vector contains 4 elements: alert (non-zero value means a change point), raw score, p-Value and martingale score.

inputColumnName
String

Name of column to transform. The column data must be Single. If set to null, the value of the outputColumnName will be used as source.

confidence
Double

The confidence for change point detection in the range [0, 100].

changeHistoryLength
Int32

The length of the sliding window on p-values for computing the martingale score.

martingale
MartingaleType

The martingale used for scoring.

eps
Double

The epsilon parameter for the Power martingale.

Returns

Examples

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectIidChangePointBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a change
            const int Size = 16;
            var data = new List<TimeSeriesData>(Size)
            {
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),

                //Change point data.
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            string outputColumnName = nameof(ChangePointPrediction.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed data.
            var transformedData = ml.Transforms.DetectIidChangePoint(
                outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
                .Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data Alert      Score   P-Value Martingale value
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 7       1       7.00    0.00    10298.67   <-- alert is on, predicted changepoint
            // 7       0       7.00    0.13    33950.16
            // 7       0       7.00    0.26    60866.34
            // 7       0       7.00    0.38    78362.04
            // 7       0       7.00    0.50    0.01
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Applies to

DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double)

Caution

This API method is deprecated, please use the overload with confidence parameter of type double.

Create IidChangePointEstimator, which predicts change points in an independent identically distributed (i.i.d.) time series based on adaptive kernel density estimations and martingale scores.

[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator

Parameters

catalog
TransformsCatalog

The transform's catalog.

outputColumnName
String

Name of the column resulting from the transformation of inputColumnName. The column data is a vector of Double. The vector contains 4 elements: alert (non-zero value means a change point), raw score, p-Value and martingale score.

inputColumnName
String

Name of column to transform. The column data must be Single. If set to null, the value of the outputColumnName will be used as source.

confidence
Int32

The confidence for change point detection in the range [0, 100].

changeHistoryLength
Int32

The length of the sliding window on p-values for computing the martingale score.

martingale
MartingaleType

The martingale used for scoring.

eps
Double

The epsilon parameter for the Power martingale.

Returns

Attributes

Examples

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectIidChangePointBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a change
            const int Size = 16;
            var data = new List<TimeSeriesData>(Size)
            {
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),

                //Change point data.
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
                new TimeSeriesData(7),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            string outputColumnName = nameof(ChangePointPrediction.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed data.
            var transformedData = ml.Transforms.DetectIidChangePoint(
                outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
                .Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data Alert      Score   P-Value Martingale value
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 5       0       5.00    0.50    0.00
            // 7       1       7.00    0.00    10298.67   <-- alert is on, predicted changepoint
            // 7       0       7.00    0.13    33950.16
            // 7       0       7.00    0.26    60866.34
            // 7       0       7.00    0.38    78362.04
            // 7       0       7.00    0.50    0.01
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
            // 7       0       7.00    0.50    0.00
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Applies to