Szybki start: używanie analiza tekstu do biblioteki klienta kondycji i interfejsu API REST
Ten artykuł zawiera analiza tekstu przewodników Szybki start dotyczących kondycji, które ułatwiają korzystanie z obsługiwanych bibliotek klienta, języków C#, Java, NodeJS i Python, a także korzystania z interfejsu API REST.
Napiwek
Możesz użyć programu Language Studio , aby wypróbować funkcje usługi językowej bez konieczności pisania kodu.
Dokumentacja referencyjna Dodatkowe przykłady | Package (NuGet) | Kod źródłowy biblioteki |
Użyj tego przewodnika Szybki start, aby utworzyć analiza tekstu dla aplikacji kondycji z biblioteką klienta dla platformy .NET. W poniższym przykładzie utworzysz aplikację w języku C#, która będzie mogła identyfikować jednostki medyczne, relacje i asercji, które pojawiają się w tekście.
Wymagania wstępne
- Subskrypcja platformy Azure — utwórz bezpłatnie
- Środowisko IDE programu Visual Studio
- Po utworzeniu subskrypcji platformy Azure utwórz zasób language w witrynie Azure Portal, aby uzyskać klucz i punkt końcowy. Po wdrożeniu wybierz pozycję Przejdź do zasobu.
- Potrzebny będzie klucz i punkt końcowy z utworzonego zasobu, aby połączyć aplikację z interfejsem API. W dalszej części przewodnika Szybki start wklejesz klucz i punkt końcowy do poniższego kodu.
- Możesz użyć bezpłatnej warstwy cenowej (
Free F0
), aby wypróbować usługę (zapewniając 5000 rekordów tekstowych — 1000 znaków) i uaktualnić później do warstwy cenowej dla środowiska produkcyjnegoStandard S
. Możesz również zacząć od warstwyStandard S
cenowej, otrzymując ten sam początkowy limit przydziału bezpłatnie (5000 rekordów tekstowych) przed pobraniem opłat. Aby uzyskać więcej informacji na temat cen, odwiedź stronę Cennik usługi językowej.
Konfigurowanie
Tworzenie zmiennych środowiskowych
Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.
Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.
- Aby ustawić zmienną
LANGUAGE_KEY
środowiskową, zastąpyour-key
element jednym z kluczy zasobu. - Aby ustawić zmienną
LANGUAGE_ENDPOINT
środowiskową, zastąpyour-endpoint
element punktem końcowym zasobu.
Ważne
Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.
Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Uwaga
Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set
zamiast setx
.
Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.
Tworzenie nowej aplikacji .NET Core
Za pomocą środowiska IDE programu Visual Studio utwórz nową aplikację konsolową platformy .NET Core. Spowoduje to utworzenie projektu „Hello world” z pojedynczym plikiem źródłowym C#: program.cs.
Zainstaluj bibliotekę klienta, klikając prawym przyciskiem myszy rozwiązanie w Eksploratorze rozwiązań i wybierając polecenie Zarządzaj pakietami NuGet. W menedżerze pakietów, który zostanie otwarty, wybierz pozycję Przeglądaj i wyszukaj ciąg Azure.AI.TextAnalytics
. Wybierz wersję 5.2.0
, a następnie pozycję Zainstaluj. Możesz również użyć konsoli menedżera pakietów.
Przykład kodu
Skopiuj następujący kod do pliku program.cs . Następnie uruchom kod.
Ważne
Przejdź do portalu Azure Portal. Jeśli zasób języka utworzony w sekcji Wymagania wstępne został wdrożony pomyślnie, kliknij przycisk Przejdź do zasobu w obszarze Następne kroki. Klucz i punkt końcowy można znaleźć, przechodząc do strony Klucze i punkt końcowy zasobu w obszarze Zarządzanie zasobami.
Ważne
Pamiętaj, aby usunąć klucz z kodu po zakończeniu i nigdy nie publikować go publicznie. W przypadku środowiska produkcyjnego użyj bezpiecznego sposobu przechowywania i uzyskiwania dostępu do poświadczeń, takich jak usługa Azure Key Vault. Aby uzyskać więcej informacji, zobacz artykuł Dotyczący zabezpieczeń usług Azure AI.
using Azure;
using System;
using Azure.AI.TextAnalytics;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace Example
{
class Program
{
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
private static readonly AzureKeyCredential credentials = new (Environment.GetEnvironmentVariable("LANGUAGE_KEY"));
private static readonly Uri endpoint = new (Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT"));
// Example method for extracting information from healthcare-related text
static async Task healthExample(TextAnalyticsClient client)
{
string document = "Prescribed 100mg ibuprofen, taken twice daily.";
List<string> batchInput = new List<string>()
{
document
};
AnalyzeHealthcareEntitiesOperation healthOperation = await client.StartAnalyzeHealthcareEntitiesAsync(batchInput);
await healthOperation.WaitForCompletionAsync();
await foreach (AnalyzeHealthcareEntitiesResultCollection documentsInPage in healthOperation.Value)
{
Console.WriteLine($"Results of Azure Text Analytics for health async model, version: \"{documentsInPage.ModelVersion}\"");
Console.WriteLine("");
foreach (AnalyzeHealthcareEntitiesResult entitiesInDoc in documentsInPage)
{
if (!entitiesInDoc.HasError)
{
foreach (var entity in entitiesInDoc.Entities)
{
// view recognized healthcare entities
Console.WriteLine($" Entity: {entity.Text}");
Console.WriteLine($" Category: {entity.Category}");
Console.WriteLine($" Offset: {entity.Offset}");
Console.WriteLine($" Length: {entity.Length}");
Console.WriteLine($" NormalizedText: {entity.NormalizedText}");
}
Console.WriteLine($" Found {entitiesInDoc.EntityRelations.Count} relations in the current document:");
Console.WriteLine("");
// view recognized healthcare relations
foreach (HealthcareEntityRelation relations in entitiesInDoc.EntityRelations)
{
Console.WriteLine($" Relation: {relations.RelationType}");
Console.WriteLine($" For this relation there are {relations.Roles.Count} roles");
// view relation roles
foreach (HealthcareEntityRelationRole role in relations.Roles)
{
Console.WriteLine($" Role Name: {role.Name}");
Console.WriteLine($" Associated Entity Text: {role.Entity.Text}");
Console.WriteLine($" Associated Entity Category: {role.Entity.Category}");
Console.WriteLine("");
}
Console.WriteLine("");
}
}
else
{
Console.WriteLine(" Error!");
Console.WriteLine($" Document error code: {entitiesInDoc.Error.ErrorCode}.");
Console.WriteLine($" Message: {entitiesInDoc.Error.Message}");
}
Console.WriteLine("");
}
}
}
static async Task Main(string[] args)
{
var client = new TextAnalyticsClient(endpoint, credentials);
await healthExample(client);
}
}
}
Wyjście
Results of Azure Text Analytics for health async model, version: "2022-03-01"
Entity: 100mg
Category: Dosage
Offset: 11
Length: 5
NormalizedText:
Entity: ibuprofen
Category: MedicationName
Offset: 17
Length: 9
NormalizedText: ibuprofen
Entity: twice daily
Category: Frequency
Offset: 34
Length: 11
NormalizedText:
Found 2 relations in the current document:
Relation: DosageOfMedication
For this relation there are 2 roles
Role Name: Dosage
Associated Entity Text: 100mg
Associated Entity Category: Dosage
Role Name: Medication
Associated Entity Text: ibuprofen
Associated Entity Category: MedicationName
Relation: FrequencyOfMedication
For this relation there are 2 roles
Role Name: Medication
Associated Entity Text: ibuprofen
Associated Entity Category: MedicationName
Role Name: Frequency
Associated Entity Text: twice daily
Associated Entity Category: Frequency
Napiwek
Struktura Fast Healthcare Interoperability Resources (FHIR) jest dostępna w wersji zapoznawczej przy użyciu interfejsu API REST języka. Biblioteki klienckie nie są obecnie obsługiwane. Dowiedz się więcej na temat używania struktury FHIR w wywołaniu interfejsu API.
Dokumentacja referencyjna Dodatkowe przykłady | Package (Maven) | Library source code |
Użyj tego przewodnika Szybki start, aby utworzyć analiza tekstu dla aplikacji kondycji przy użyciu biblioteki klienta dla języka Java. W poniższym przykładzie utworzysz aplikację Java, która będzie mogła identyfikować jednostki medyczne, relacje i asercji, które pojawiają się w tekście.
Wymagania wstępne
- Subskrypcja platformy Azure — utwórz bezpłatnie
- Zestaw Java Development Kit (JDK) w wersji 8 lub nowszej
- Po utworzeniu subskrypcji platformy Azure utwórz zasób language w witrynie Azure Portal, aby uzyskać klucz i punkt końcowy. Po wdrożeniu wybierz pozycję Przejdź do zasobu.
- Potrzebny będzie klucz i punkt końcowy z utworzonego zasobu, aby połączyć aplikację z interfejsem API. W dalszej części przewodnika Szybki start wklejesz klucz i punkt końcowy do poniższego kodu.
- Możesz użyć bezpłatnej warstwy cenowej (
Free F0
), aby wypróbować usługę (zapewniając 5000 rekordów tekstowych — 1000 znaków) i uaktualnić później do warstwy cenowej dla środowiska produkcyjnegoStandard S
. Możesz również zacząć od warstwyStandard S
cenowej, otrzymując ten sam początkowy limit przydziału bezpłatnie (5000 rekordów tekstowych) przed pobraniem opłat. Aby uzyskać więcej informacji na temat cen, odwiedź stronę Cennik usługi językowej.
Konfigurowanie
Tworzenie zmiennych środowiskowych
Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.
Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.
- Aby ustawić zmienną
LANGUAGE_KEY
środowiskową, zastąpyour-key
element jednym z kluczy zasobu. - Aby ustawić zmienną
LANGUAGE_ENDPOINT
środowiskową, zastąpyour-endpoint
element punktem końcowym zasobu.
Ważne
Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.
Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Uwaga
Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set
zamiast setx
.
Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.
Dodawanie biblioteki klienta
Utwórz projekt Maven w preferowanym środowisku IDE lub w środowisku deweloperskim. Następnie dodaj następującą zależność do pliku pom.xml projektu. Składnię implementacji dla innych narzędzi kompilacji można znaleźć w Internecie.
<dependencies>
<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-ai-textanalytics</artifactId>
<version>5.2.0</version>
</dependency>
</dependencies>
Przykład kodu
Utwórz plik Java o nazwie EntityLinking.java
. Otwórz plik i skopiuj poniższy kod. Następnie uruchom kod.
Ważne
Przejdź do portalu Azure Portal. Jeśli zasób języka utworzony w sekcji Wymagania wstępne został wdrożony pomyślnie, kliknij przycisk Przejdź do zasobu w obszarze Następne kroki. Klucz i punkt końcowy można znaleźć, przechodząc do strony Klucze i punkt końcowy zasobu w obszarze Zarządzanie zasobami.
Ważne
Pamiętaj, aby usunąć klucz z kodu po zakończeniu i nigdy nie publikować go publicznie. W przypadku środowiska produkcyjnego użyj bezpiecznego sposobu przechowywania i uzyskiwania dostępu do poświadczeń, takich jak usługa Azure Key Vault. Aby uzyskać więcej informacji, zobacz artykuł Dotyczący zabezpieczeń usług Azure AI.
import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;
import java.util.List;
import java.util.Arrays;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
import com.azure.ai.textanalytics.util.*;
public class Example {
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
private static String KEY = System.getenv("LANGUAGE_KEY");
private static String ENDPOINT = System.getenv("LANGUAGE_ENDPOINT");
public static void main(String[] args) {
TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
healthExample(client);
}
// Method to authenticate the client object with your key and endpoint
static TextAnalyticsClient authenticateClient(String key, String endpoint) {
return new TextAnalyticsClientBuilder()
.credential(new AzureKeyCredential(key))
.endpoint(endpoint)
.buildClient();
}
// Example method for extracting information from healthcare-related text
static void healthExample(TextAnalyticsClient client){
List<TextDocumentInput> documents = Arrays.asList(
new TextDocumentInput("0",
"Prescribed 100mg ibuprofen, taken twice daily."));
AnalyzeHealthcareEntitiesOptions options = new AnalyzeHealthcareEntitiesOptions().setIncludeStatistics(true);
SyncPoller<AnalyzeHealthcareEntitiesOperationDetail, AnalyzeHealthcareEntitiesPagedIterable>
syncPoller = client.beginAnalyzeHealthcareEntities(documents, options, Context.NONE);
System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());
syncPoller.waitForCompletion();
// Task operation statistics
AnalyzeHealthcareEntitiesOperationDetail operationResult = syncPoller.poll().getValue();
System.out.printf("Operation created time: %s, expiration time: %s.%n",
operationResult.getCreatedAt(), operationResult.getExpiresAt());
System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());
for (AnalyzeHealthcareEntitiesResultCollection resultCollection : syncPoller.getFinalResult()) {
// Model version
System.out.printf(
"Results of Azure Text Analytics for health entities\" Model, version: %s%n",
resultCollection.getModelVersion());
for (AnalyzeHealthcareEntitiesResult healthcareEntitiesResult : resultCollection) {
System.out.println("Document ID = " + healthcareEntitiesResult.getId());
System.out.println("Document entities: ");
// Recognized healthcare entities
for (HealthcareEntity entity : healthcareEntitiesResult.getEntities()) {
System.out.printf(
"\tText: %s, normalized name: %s, category: %s, subcategory: %s, confidence score: %f.%n",
entity.getText(), entity.getNormalizedText(), entity.getCategory(),
entity.getSubcategory(), entity.getConfidenceScore());
}
// Recognized healthcare entity relation groups
for (HealthcareEntityRelation entityRelation : healthcareEntitiesResult.getEntityRelations()) {
System.out.printf("Relation type: %s.%n", entityRelation.getRelationType());
for (HealthcareEntityRelationRole role : entityRelation.getRoles()) {
HealthcareEntity entity = role.getEntity();
System.out.printf("\tEntity text: %s, category: %s, role: %s.%n",
entity.getText(), entity.getCategory(), role.getName());
}
}
}
}
}
}
Wyjście
Poller status: IN_PROGRESS.
Operation created time: 2022-09-15T19:06:11Z, expiration time: 2022-09-16T19:06:11Z.
Poller status: SUCCESSFULLY_COMPLETED.
Results of Azure Text Analytics for health entities" Model, version: 2022-03-01
Document ID = 0
Document entities:
Text: 100mg, normalized name: null, category: Dosage, subcategory: null, confidence score: 0.980000.
Text: ibuprofen, normalized name: ibuprofen, category: MedicationName, subcategory: null, confidence score: 1.000000.
Text: twice daily, normalized name: null, category: Frequency, subcategory: null, confidence score: 1.000000.
Relation type: DosageOfMedication.
Entity text: 100mg, category: Dosage, role: Dosage.
Entity text: ibuprofen, category: MedicationName, role: Medication.
Relation type: FrequencyOfMedication.
Entity text: ibuprofen, category: MedicationName, role: Medication.
Entity text: twice daily, category: Frequency, role: Frequency.
Napiwek
Struktura Fast Healthcare Interoperability Resources (FHIR) jest dostępna w wersji zapoznawczej przy użyciu interfejsu API REST języka. Biblioteki klienckie nie są obecnie obsługiwane. Dowiedz się więcej na temat używania struktury FHIR w wywołaniu interfejsu API.
Dokumentacja referencyjna Dodatkowe przykłady | Package (npm) | Kod źródłowy biblioteki |
Użyj tego przewodnika Szybki start, aby utworzyć analiza tekstu dla aplikacji kondycji z biblioteką klienta dla Node.js. W poniższym przykładzie utworzysz aplikację JavaScript, która będzie mogła identyfikować jednostki medyczne, relacje i asercje, które pojawiają się w tekście.
Wymagania wstępne
- Subskrypcja platformy Azure — utwórz bezpłatnie
- Node.js wersji 14 LTS lub nowszej
- Po utworzeniu subskrypcji platformy Azure utwórz zasób language w witrynie Azure Portal, aby uzyskać klucz i punkt końcowy. Po wdrożeniu wybierz pozycję Przejdź do zasobu.
- Potrzebny będzie klucz i punkt końcowy z utworzonego zasobu, aby połączyć aplikację z interfejsem API. W dalszej części przewodnika Szybki start wklejesz klucz i punkt końcowy do poniższego kodu.
- Możesz użyć bezpłatnej warstwy cenowej (
Free F0
), aby wypróbować usługę (zapewniając 5000 rekordów tekstowych — 1000 znaków) i uaktualnić później do warstwy cenowej dla środowiska produkcyjnegoStandard S
. Możesz również zacząć od warstwyStandard S
cenowej, otrzymując ten sam początkowy limit przydziału bezpłatnie (5000 rekordów tekstowych) przed pobraniem opłat. Aby uzyskać więcej informacji na temat cen, odwiedź stronę Cennik usługi językowej.
Konfigurowanie
Tworzenie zmiennych środowiskowych
Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.
Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.
- Aby ustawić zmienną
LANGUAGE_KEY
środowiskową, zastąpyour-key
element jednym z kluczy zasobu. - Aby ustawić zmienną
LANGUAGE_ENDPOINT
środowiskową, zastąpyour-endpoint
element punktem końcowym zasobu.
Ważne
Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.
Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Uwaga
Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set
zamiast setx
.
Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.
Tworzenie nowej aplikacji Node.js
W oknie konsoli (na przykład cmd, PowerShell lub Bash) utwórz nowy katalog dla aplikacji i przejdź do niego.
mkdir myapp
cd myapp
Uruchom polecenie npm init
, aby utworzyć aplikację Node przy użyciu pliku package.json
.
npm init
Instalowanie biblioteki klienta
Zainstaluj pakiet npm:
npm install @azure/ai-language-text
Przykład kodu
Otwórz plik i skopiuj poniższy kod. Następnie uruchom kod.
Ważne
Przejdź do portalu Azure Portal. Jeśli zasób języka utworzony w sekcji Wymagania wstępne został wdrożony pomyślnie, kliknij przycisk Przejdź do zasobu w obszarze Następne kroki. Klucz i punkt końcowy można znaleźć, przechodząc do strony Klucze i punkt końcowy zasobu w obszarze Zarządzanie zasobami.
Ważne
Pamiętaj, aby usunąć klucz z kodu po zakończeniu i nigdy nie publikować go publicznie. W przypadku środowiska produkcyjnego użyj bezpiecznego sposobu przechowywania i uzyskiwania dostępu do poświadczeń, takich jak usługa Azure Key Vault. Aby uzyskać więcej informacji, zobacz artykuł Dotyczący zabezpieczeń usług Azure AI.
"use strict";
const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;
const documents = ["Patient does not suffer from high blood pressure."];
async function main() {
console.log("== Text analytics for health sample ==");
const client = new TextAnalysisClient(endpoint, new AzureKeyCredential(key));
const actions = [
{
kind: "Healthcare",
},
];
const poller = await client.beginAnalyzeBatch(actions, documents, "en");
poller.onProgress(() => {
console.log(
`Last time the operation was updated was on: ${poller.getOperationState().modifiedOn}`
);
});
console.log(`The operation was created on ${poller.getOperationState().createdOn}`);
console.log(`The operation results will expire on ${poller.getOperationState().expiresOn}`);
const results = await poller.pollUntilDone();
for await (const actionResult of results) {
if (actionResult.kind !== "Healthcare") {
throw new Error(`Expected a healthcare results but got: ${actionResult.kind}`);
}
if (actionResult.error) {
const { code, message } = actionResult.error;
throw new Error(`Unexpected error (${code}): ${message}`);
}
for (const result of actionResult.results) {
console.log(`- Document ${result.id}`);
if (result.error) {
const { code, message } = result.error;
throw new Error(`Unexpected error (${code}): ${message}`);
}
console.log("\tRecognized Entities:");
for (const entity of result.entities) {
console.log(`\t- Entity "${entity.text}" of type ${entity.category}`);
if (entity.dataSources.length > 0) {
console.log("\t and it can be referenced in the following data sources:");
for (const ds of entity.dataSources) {
console.log(`\t\t- ${ds.name} with Entity ID: ${ds.entityId}`);
}
}
}
if (result.entityRelations.length > 0) {
console.log(`\tRecognized relations between entities:`);
for (const relation of result.entityRelations) {
console.log(
`\t\t- Relation of type ${relation.relationType} found between the following entities:`
);
for (const role of relation.roles) {
console.log(`\t\t\t- "${role.entity.text}" with the role ${role.name}`);
}
}
}
}
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
});
Wyjście
== Text analytics for health sample ==
The operation was created on Mon Feb 13 2023 13:12:10 GMT-0800 (Pacific Standard Time)
The operation results will expire on Tue Feb 14 2023 13:12:10 GMT-0800 (Pacific Standard Time)
Last time the operation was updated was on: Mon Feb 13 2023 13:12:10 GMT-0800 (Pacific Standard Time)
- Document 0
Recognized Entities:
- Entity "high blood pressure" of type SymptomOrSign
and it can be referenced in the following data sources:
- UMLS with Entity ID: C0020538
- AOD with Entity ID: 0000023317
- BI with Entity ID: BI00001
- CCPSS with Entity ID: 1017493
- CCS with Entity ID: 7.1
- CHV with Entity ID: 0000015800
- COSTAR with Entity ID: 397
- CSP with Entity ID: 0571-5243
- CST with Entity ID: HYPERTENS
- DXP with Entity ID: U002034
- HPO with Entity ID: HP:0000822
- ICD10 with Entity ID: I10-I15.9
- ICD10AM with Entity ID: I10-I15.9
- ICD10CM with Entity ID: I10
- ICD9CM with Entity ID: 997.91
- ICPC2ICD10ENG with Entity ID: MTHU035456
- ICPC2P with Entity ID: K85004
- LCH with Entity ID: U002317
- LCH_NW with Entity ID: sh85063723
- LNC with Entity ID: LA14293-7
- MDR with Entity ID: 10020772
- MEDCIN with Entity ID: 33288
- MEDLINEPLUS with Entity ID: 34
- MSH with Entity ID: D006973
- MTH with Entity ID: 005
- MTHICD9 with Entity ID: 997.91
- NANDA-I with Entity ID: 00905
- NCI with Entity ID: C3117
- NCI_CPTAC with Entity ID: C3117
- NCI_CTCAE with Entity ID: E13785
- NCI_CTRP with Entity ID: C3117
- NCI_FDA with Entity ID: 1908
- NCI_GDC with Entity ID: C3117
- NCI_NCI-GLOSS with Entity ID: CDR0000458091
- NCI_NICHD with Entity ID: C3117
- NCI_caDSR with Entity ID: C3117
- NOC with Entity ID: 060808
- OMIM with Entity ID: MTHU002068
- PCDS with Entity ID: PRB_11000.06
- PDQ with Entity ID: CDR0000686951
- PSY with Entity ID: 23830
- RCD with Entity ID: XE0Ub
- SNM with Entity ID: F-70700
- SNMI with Entity ID: D3-02000
- SNOMEDCT_US with Entity ID: 38341003
- WHO with Entity ID: 0210
Napiwek
Struktura Fast Healthcare Interoperability Resources (FHIR) jest dostępna w wersji zapoznawczej przy użyciu interfejsu API REST języka. Biblioteki klienckie nie są obecnie obsługiwane. Dowiedz się więcej na temat używania struktury FHIR w wywołaniu interfejsu API.
Dokumentacja referencyjna Dodatkowe przykłady | Package (PyPi) | Kod źródłowy biblioteki |
Użyj tego przewodnika Szybki start, aby utworzyć analiza tekstu dla aplikacji kondycji z biblioteką klienta dla języka Python. W poniższym przykładzie utworzysz aplikację w języku Python, która będzie mogła identyfikować jednostki medyczne, relacje i aseracje, które pojawiają się w tekście.
Wymagania wstępne
- Subskrypcja platformy Azure — utwórz bezpłatnie
- Środowisko Python w wersji 3.8 lub nowszej
- Po utworzeniu subskrypcji platformy Azure utwórz zasób language w witrynie Azure Portal, aby uzyskać klucz i punkt końcowy. Po wdrożeniu wybierz pozycję Przejdź do zasobu.
- Potrzebny będzie klucz i punkt końcowy z utworzonego zasobu, aby połączyć aplikację z interfejsem API. W dalszej części przewodnika Szybki start wklejesz klucz i punkt końcowy do poniższego kodu.
- Możesz użyć bezpłatnej warstwy cenowej (
Free F0
), aby wypróbować usługę (zapewniając 5000 rekordów tekstowych — 1000 znaków) i uaktualnić później do warstwy cenowej dla środowiska produkcyjnegoStandard S
. Możesz również zacząć od warstwyStandard S
cenowej, otrzymując ten sam początkowy limit przydziału bezpłatnie (5000 rekordów tekstowych) przed pobraniem opłat. Aby uzyskać więcej informacji na temat cen, odwiedź stronę Cennik usługi językowej.
Konfigurowanie
Tworzenie zmiennych środowiskowych
Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.
Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.
- Aby ustawić zmienną
LANGUAGE_KEY
środowiskową, zastąpyour-key
element jednym z kluczy zasobu. - Aby ustawić zmienną
LANGUAGE_ENDPOINT
środowiskową, zastąpyour-endpoint
element punktem końcowym zasobu.
Ważne
Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.
Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Uwaga
Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set
zamiast setx
.
Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.
Instalowanie biblioteki klienta
Po zainstalowaniu środowiska Python możesz zainstalować bibliotekę klienta przy użyciu następującego polecenia:
pip install azure-ai-textanalytics==5.2.0
Przykład kodu
Utwórz nowy plik języka Python i skopiuj poniższy kod. Następnie uruchom kod.
Ważne
Przejdź do portalu Azure Portal. Jeśli zasób języka utworzony w sekcji Wymagania wstępne został wdrożony pomyślnie, kliknij przycisk Przejdź do zasobu w obszarze Następne kroki. Klucz i punkt końcowy można znaleźć, przechodząc do strony Klucze i punkt końcowy zasobu w obszarze Zarządzanie zasobami.
Ważne
Pamiętaj, aby usunąć klucz z kodu po zakończeniu i nigdy nie publikować go publicznie. W przypadku środowiska produkcyjnego użyj bezpiecznego sposobu przechowywania i uzyskiwania dostępu do poświadczeń, takich jak usługa Azure Key Vault. Aby uzyskać więcej informacji, zobacz artykuł Dotyczący zabezpieczeń usług Azure AI.
# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
key = os.environ.get('LANGUAGE_KEY')
endpoint = os.environ.get('LANGUAGE_ENDPOINT')
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
# Authenticate the client using your key and endpoint
def authenticate_client():
ta_credential = AzureKeyCredential(key)
text_analytics_client = TextAnalyticsClient(
endpoint=endpoint,
credential=ta_credential)
return text_analytics_client
client = authenticate_client()
# Example function for extracting information from healthcare-related text
def health_example(client):
documents = [
"""
Patient needs to take 50 mg of ibuprofen.
"""
]
poller = client.begin_analyze_healthcare_entities(documents)
result = poller.result()
docs = [doc for doc in result if not doc.is_error]
for idx, doc in enumerate(docs):
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("...Normalized Text: {}".format(entity.normalized_text))
print("...Category: {}".format(entity.category))
print("...Subcategory: {}".format(entity.subcategory))
print("...Offset: {}".format(entity.offset))
print("...Confidence score: {}".format(entity.confidence_score))
for relation in doc.entity_relations:
print("Relation of type: {} has the following roles".format(relation.relation_type))
for role in relation.roles:
print("...Role '{}' with entity '{}'".format(role.name, role.entity.text))
print("------------------------------------------")
health_example(client)
Wyjście
Entity: 50 mg
...Normalized Text: None
...Category: Dosage
...Subcategory: None
...Offset: 31
...Confidence score: 1.0
Entity: ibuprofen
...Normalized Text: ibuprofen
...Category: MedicationName
...Subcategory: None
...Offset: 40
...Confidence score: 1.0
Relation of type: DosageOfMedication has the following roles
...Role 'Dosage' with entity '50 mg'
...Role 'Medication' with entity 'ibuprofen'
Napiwek
Struktura Fast Healthcare Interoperability Resources (FHIR) jest dostępna w wersji zapoznawczej przy użyciu interfejsu API REST języka. Biblioteki klienckie nie są obecnie obsługiwane. Dowiedz się więcej na temat używania struktury FHIR w wywołaniu interfejsu API.
Użyj tego przewodnika Szybki start, aby wysyłać żądania wykrywania języka przy użyciu interfejsu API REST. W poniższym przykładzie użyjesz biblioteki cURL do identyfikowania jednostek medycznych, relacji i asercji, które pojawiają się w tekście.
Wymagania wstępne
- Bieżąca wersja programu cURL
- Subskrypcja platformy Azure — utwórz bezpłatnie subskrypcję platformy Azure
- Po utworzeniu subskrypcji platformy Azure utwórz zasób language w witrynie Azure Portal, aby uzyskać klucz i punkt końcowy. Po wdrożeniu wybierz pozycję Przejdź do zasobu.
- Potrzebny będzie klucz i punkt końcowy z utworzonego zasobu, aby połączyć aplikację z interfejsem API. W dalszej części przewodnika Szybki start wklejesz klucz i punkt końcowy do poniższego kodu.
- Możesz użyć bezpłatnej warstwy cenowej (
Free F0
), aby wypróbować usługę (zapewniając 5000 rekordów tekstowych — 1000 znaków) i uaktualnić później do warstwy cenowej dla środowiska produkcyjnegoStandard S
. Możesz również zacząć od warstwyStandard S
cenowej, otrzymując ten sam początkowy limit przydziału bezpłatnie (5000 rekordów tekstowych) przed pobraniem opłat. Aby uzyskać więcej informacji na temat cen, odwiedź stronę Cennik usługi językowej.
Uwaga
- W poniższych przykładach powłoki BASH użyto
\
znaku kontynuacji wiersza. Jeśli konsola lub terminal używa innego znaku kontynuacji wiersza, użyj tego znaku. - Przykłady specyficzne dla języka można znaleźć w witrynie GitHub.
- Przejdź do witryny Azure Portal i znajdź klucz i punkt końcowy zasobu Language utworzonego w wymaganiach wstępnych. Będą one znajdować się na stronie klucza zasobu i punktu końcowego w obszarze zarządzanie zasobami. Następnie zastąp ciągi w poniższym kodzie kluczem i punktem końcowym. Aby wywołać interfejs API, potrzebne są następujące informacje:
Konfigurowanie
Tworzenie zmiennych środowiskowych
Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.
Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.
- Aby ustawić zmienną
LANGUAGE_KEY
środowiskową, zastąpyour-key
element jednym z kluczy zasobu. - Aby ustawić zmienną
LANGUAGE_ENDPOINT
środowiskową, zastąpyour-endpoint
element punktem końcowym zasobu.
Ważne
Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.
Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Uwaga
Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set
zamiast setx
.
Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.
parametr | Opis |
---|---|
-X POST <endpoint> |
Określa punkt końcowy na potrzeby uzyskiwania dostępu do interfejsu API. |
-H Content-Type: application/json |
Typ zawartości do wysyłania danych JSON. |
-H "Ocp-Apim-Subscription-Key:<key> |
Określa klucz dostępu do interfejsu API. |
-d <documents> |
Kod JSON zawierający dokumenty, które chcesz wysłać. |
Następujące polecenia cURL są wykonywane z powłoki BASH. Edytuj te polecenia przy użyciu własnych nazw zasobów, klucza zasobu i wartości JSON.
Analiza tekstu dla opieki zdrowotnej
- Skopiuj polecenie do edytora tekstów.
- W razie potrzeby wprowadź następujące zmiany w poleceniu:
- Zastąp wartość
<your-language-resource-key>
kluczem. - Zastąp pierwszą część adresu URL żądania adresem URL
<your-language-resource-endpoint>
punktu końcowego.
- Zastąp wartość
- Otwórz okno wiersza polecenia.
- Wklej polecenie z edytora tekstów w oknie wiersza polecenia, a następnie uruchom polecenie.
curl -i -X POST $LANGUAGE_ENDPOINT/language/analyze-text/jobs?api-version=2022-05-15-preview \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: $LANGUAGE_KEY" \
-d '{"analysisInput":{"documents": [{"text": "The doctor prescried 200mg Ibuprofen.","language": "en","id": "1"}]},"tasks":[{"taskId": "analyze 1","kind": "Healthcare","parameters": {"fhirVersion": "4.0.1"}}]}'
Pobierz element operation-location
z nagłówka odpowiedzi. Wartość będzie wyglądać podobnie do następującego adresu URL:
https://your-resource.cognitiveservices.azure.com/language/analyze-text/jobs/{JOB-ID}?api-version=2022-05-15-preview
Aby uzyskać wyniki żądania, użyj następującego polecenia cURL. Pamiętaj, aby zastąpić {JOB-ID}
ciąg wartością liczbową identyfikatora otrzymaną z poprzedniego operation-location
nagłówka odpowiedzi:
curl -X GET $LANGUAGE_ENDPOINT/language/analyze-text/jobs/{JOB-ID}?api-version=2022-05-15-preview \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: $LANGUAGE_KEY"
Odpowiedź w formacie JSON
{
"jobId": "{JOB-ID}",
"lastUpdatedDateTime": "2022-06-27T22:04:39Z",
"createdDateTime": "2022-06-27T22:04:38Z",
"expirationDateTime": "2022-06-28T22:04:38Z",
"status": "succeeded",
"errors": [],
"tasks": {
"completed": 1,
"failed": 0,
"inProgress": 0,
"total": 1,
"items": [
{
"kind": "HealthcareLROResults",
"lastUpdateDateTime": "2022-06-27T22:04:39.7086762Z",
"status": "succeeded",
"results": {
"documents": [
{
"id": "1",
"entities": [
{
"offset": 4,
"length": 6,
"text": "doctor",
"category": "HealthcareProfession",
"confidenceScore": 0.76
},
{
"offset": 21,
"length": 5,
"text": "200mg",
"category": "Dosage",
"confidenceScore": 0.99
},
{
"offset": 27,
"length": 9,
"text": "Ibuprofen",
"category": "MedicationName",
"confidenceScore": 1.0,
"name": "ibuprofen",
"links": [
{
"dataSource": "UMLS",
"id": "C0020740"
},
{
"dataSource": "AOD",
"id": "0000019879"
},
{
"dataSource": "ATC",
"id": "M01AE01"
},
{
"dataSource": "CCPSS",
"id": "0046165"
},
{
"dataSource": "CHV",
"id": "0000006519"
},
{
"dataSource": "CSP",
"id": "2270-2077"
},
{
"dataSource": "DRUGBANK",
"id": "DB01050"
},
{
"dataSource": "GS",
"id": "1611"
},
{
"dataSource": "LCH_NW",
"id": "sh97005926"
},
{
"dataSource": "LNC",
"id": "LP16165-0"
},
{
"dataSource": "MEDCIN",
"id": "40458"
},
{
"dataSource": "MMSL",
"id": "d00015"
},
{
"dataSource": "MSH",
"id": "D007052"
},
{
"dataSource": "MTHSPL",
"id": "WK2XYI10QM"
},
{
"dataSource": "NCI",
"id": "C561"
},
{
"dataSource": "NCI_CTRP",
"id": "C561"
},
{
"dataSource": "NCI_DCP",
"id": "00803"
},
{
"dataSource": "NCI_DTP",
"id": "NSC0256857"
},
{
"dataSource": "NCI_FDA",
"id": "WK2XYI10QM"
},
{
"dataSource": "NCI_NCI-GLOSS",
"id": "CDR0000613511"
},
{
"dataSource": "NDDF",
"id": "002377"
},
{
"dataSource": "PDQ",
"id": "CDR0000040475"
},
{
"dataSource": "RCD",
"id": "x02MO"
},
{
"dataSource": "RXNORM",
"id": "5640"
},
{
"dataSource": "SNM",
"id": "E-7772"
},
{
"dataSource": "SNMI",
"id": "C-603C0"
},
{
"dataSource": "SNOMEDCT_US",
"id": "387207008"
},
{
"dataSource": "USP",
"id": "m39860"
},
{
"dataSource": "USPMG",
"id": "MTHU000060"
},
{
"dataSource": "VANDF",
"id": "4017840"
}
]
}
],
"relations": [
{
"relationType": "DosageOfMedication",
"entities": [
{
"ref": "#/results/documents/0/entities/1",
"role": "Dosage"
},
{
"ref": "#/results/documents/0/entities/2",
"role": "Medication"
}
]
}
],
"warnings": [],
"fhirBundle": {
"resourceType": "Bundle",
"id": "95d61191-402a-48c6-9657-a1e4efbda877",
"meta": {
"profile": [
"http://hl7.org/fhir/4.0.1/StructureDefinition/Bundle"
]
},
"identifier": {
"system": "urn:ietf:rfc:3986",
"value": "urn:uuid:95d61191-402a-48c6-9657-a1e4efbda877"
},
"type": "document",
"entry": [
{
"fullUrl": "Composition/34b666d3-45e7-474d-a398-d3b0329541ad",
"resource": {
"resourceType": "Composition",
"id": "34b666d3-45e7-474d-a398-d3b0329541ad",
"status": "final",
"type": {
"coding": [
{
"system": "http://loinc.org",
"code": "11526-1",
"display": "Pathology study"
}
],
"text": "Pathology study"
},
"subject": {
"reference": "Patient/68dd21ce-58ae-4e59-9445-8331f99899ed",
"type": "Patient"
},
"encounter": {
"reference": "Encounter/90c75fea-4526-4e94-82f8-8df3bc983a14",
"type": "Encounter",
"display": "unknown"
},
"date": "2022-06-27",
"author": [
{
"reference": "Practitioner/a8ef1526-d4ce-41df-96df-e9d03428c840",
"type": "Practitioner",
"display": "Unknown"
}
],
"title": "Pathology study",
"section": [
{
"title": "General",
"code": {
"coding": [
{
"system": "",
"display": "Unrecognized Section"
}
],
"text": "General"
},
"text": {
"div": "<div>\r\n\t\t\t\t\t\t\t<h1>General</h1>\r\n\t\t\t\t\t\t\t<p>The doctor prescried 200mg Ibuprofen.</p>\r\n\t\t\t\t\t</div>"
},
"entry": [
{
"reference": "List/c8ca6757-1d7c-4c49-94e9-ef5263cb943c",
"type": "List",
"display": "General"
}
]
}
]
}
},
{
"fullUrl": "Practitioner/a8ef1526-d4ce-41df-96df-e9d03428c840",
"resource": {
"resourceType": "Practitioner",
"id": "a8ef1526-d4ce-41df-96df-e9d03428c840",
"extension": [
{
"extension": [
{
"url": "offset",
"valueInteger": -1
},
{
"url": "length",
"valueInteger": 7
}
],
"url": "http://hl7.org/fhir/StructureDefinition/derivation-reference"
}
],
"name": [
{
"text": "Unknown",
"family": "Unknown"
}
]
}
},
{
"fullUrl": "Patient/68dd21ce-58ae-4e59-9445-8331f99899ed",
"resource": {
"resourceType": "Patient",
"id": "68dd21ce-58ae-4e59-9445-8331f99899ed",
"gender": "unknown"
}
},
{
"fullUrl": "Encounter/90c75fea-4526-4e94-82f8-8df3bc983a14",
"resource": {
"resourceType": "Encounter",
"id": "90c75fea-4526-4e94-82f8-8df3bc983a14",
"meta": {
"profile": [
"http://hl7.org/fhir/us/core/StructureDefinition/us-core-encounter"
]
},
"status": "finished",
"class": {
"system": "http://terminology.hl7.org/CodeSystem/v3-ActCode",
"display": "unknown"
},
"subject": {
"reference": "Patient/68dd21ce-58ae-4e59-9445-8331f99899ed",
"type": "Patient"
}
}
},
{
"fullUrl": "MedicationStatement/17aeee32-1189-47fc-9223-8abe174f1292",
"resource": {
"resourceType": "MedicationStatement",
"id": "17aeee32-1189-47fc-9223-8abe174f1292",
"extension": [
{
"extension": [
{
"url": "offset",
"valueInteger": 27
},
{
"url": "length",
"valueInteger": 9
}
],
"url": "http://hl7.org/fhir/StructureDefinition/derivation-reference"
}
],
"status": "active",
"medicationCodeableConcept": {
"coding": [
{
"system": "http://www.nlm.nih.gov/research/umls",
"code": "C0020740",
"display": "ibuprofen"
},
{
"system": "http://www.nlm.nih.gov/research/umls/aod",
"code": "0000019879"
},
{
"system": "http://www.whocc.no/atc",
"code": "M01AE01"
},
{
"system": "http://www.nlm.nih.gov/research/umls/ccpss",
"code": "0046165"
},
{
"system": "http://www.nlm.nih.gov/research/umls/chv",
"code": "0000006519"
},
{
"system": "http://www.nlm.nih.gov/research/umls/csp",
"code": "2270-2077"
},
{
"system": "http://www.nlm.nih.gov/research/umls/drugbank",
"code": "DB01050"
},
{
"system": "http://www.nlm.nih.gov/research/umls/gs",
"code": "1611"
},
{
"system": "http://www.nlm.nih.gov/research/umls/lch_nw",
"code": "sh97005926"
},
{
"system": "http://loinc.org",
"code": "LP16165-0"
},
{
"system": "http://www.nlm.nih.gov/research/umls/medcin",
"code": "40458"
},
{
"system": "http://www.nlm.nih.gov/research/umls/mmsl",
"code": "d00015"
},
{
"system": "http://www.nlm.nih.gov/research/umls/msh",
"code": "D007052"
},
{
"system": "http://www.nlm.nih.gov/research/umls/mthspl",
"code": "WK2XYI10QM"
},
{
"system": "http://ncimeta.nci.nih.gov",
"code": "C561"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nci_ctrp",
"code": "C561"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nci_dcp",
"code": "00803"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nci_dtp",
"code": "NSC0256857"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nci_fda",
"code": "WK2XYI10QM"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nci_nci-gloss",
"code": "CDR0000613511"
},
{
"system": "http://www.nlm.nih.gov/research/umls/nddf",
"code": "002377"
},
{
"system": "http://www.nlm.nih.gov/research/umls/pdq",
"code": "CDR0000040475"
},
{
"system": "http://www.nlm.nih.gov/research/umls/rcd",
"code": "x02MO"
},
{
"system": "http://www.nlm.nih.gov/research/umls/rxnorm",
"code": "5640"
},
{
"system": "http://snomed.info/sct",
"code": "E-7772"
},
{
"system": "http://snomed.info/sct/900000000000207008",
"code": "C-603C0"
},
{
"system": "http://snomed.info/sct/731000124108",
"code": "387207008"
},
{
"system": "http://www.nlm.nih.gov/research/umls/usp",
"code": "m39860"
},
{
"system": "http://www.nlm.nih.gov/research/umls/uspmg",
"code": "MTHU000060"
},
{
"system": "http://hl7.org/fhir/ndfrt",
"code": "4017840"
}
],
"text": "Ibuprofen"
},
"subject": {
"reference": "Patient/68dd21ce-58ae-4e59-9445-8331f99899ed",
"type": "Patient"
},
"context": {
"reference": "Encounter/90c75fea-4526-4e94-82f8-8df3bc983a14",
"type": "Encounter",
"display": "unknown"
},
"dosage": [
{
"text": "200mg",
"doseAndRate": [
{
"doseQuantity": {
"value": 200
}
}
]
}
]
}
},
{
"fullUrl": "List/c8ca6757-1d7c-4c49-94e9-ef5263cb943c",
"resource": {
"resourceType": "List",
"id": "c8ca6757-1d7c-4c49-94e9-ef5263cb943c",
"status": "current",
"mode": "snapshot",
"title": "General",
"subject": {
"reference": "Patient/68dd21ce-58ae-4e59-9445-8331f99899ed",
"type": "Patient"
},
"encounter": {
"reference": "Encounter/90c75fea-4526-4e94-82f8-8df3bc983a14",
"type": "Encounter",
"display": "unknown"
},
"entry": [
{
"item": {
"reference": "MedicationStatement/17aeee32-1189-47fc-9223-8abe174f1292",
"type": "MedicationStatement",
"display": "Ibuprofen"
}
}
]
}
}
]
}
}
],
"errors": [],
"modelVersion": "2022-03-01"
}
}
]
}
}
Napiwek
Struktura Fast Healthcare Interoperability Resources (FHIR) jest dostępna w wersji zapoznawczej przy użyciu interfejsu API REST języka. Biblioteki klienckie nie są obecnie obsługiwane. Dowiedz się więcej na temat używania struktury FHIR w wywołaniu interfejsu API.
Czyszczenie zasobów
Jeśli chcesz wyczyścić i usunąć subskrypcję usług Azure AI, możesz usunąć zasób lub grupę zasobów. Usunięcie grupy zasobów powoduje również usunięcie wszelkich innych skojarzonych z nią zasobów.