Compartilhar via


Databricks Runtime 8.2 para ML (EoS)

Observação

O suporte para esta versão do Databricks Runtime foi encerrado. Para obter a data de fim do suporte, consulte o Histórico de fim do suporte. Para todas as versões compatíveis do Databricks Runtime, consulte Versões e compatibilidade de notas sobre a versão do Databricks Runtime.

O Databricks lançou essa versão em abril de 2021.

O Databricks Runtime 8.2 para Machine Learning fornece um ambiente de aprendizado de máquina e ciência de dados pronto para uso baseado no Databricks Runtime 8.2 (EoS). O Databricks Runtime ML contém muitas bibliotecas de machine learning populares, incluindo o TensorFlow, o PyTorch e o XGBoost. Ele também dá suporte ao treinamento de aprendizado profundo distribuído com o uso do Horovod.

Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, confira IA e Machine Learning no Databricks.

Novos recursos e principais alterações

O Databricks Runtime 8.2 ML foi criado com base no Databricks Runtime 8.2. Para obter informações sobre as novidades do Databricks Runtime 8.2, incluindo Apache Spark MLlib e SparkR, confira as notas sobre a versão do Databricks Runtime 8.2 (EoS).

Principais alterações no ambiente do Python para o Databricks Runtime ML

Confira o Databricks Runtime 8.2 (EoS) para conhecer as principais alterações no ambiente do Python para o Databricks Runtime. Para ver uma lista completa dos pacotes do Python instalados e suas versões, confira Bibliotecas do Python.

Pacotes do Python atualizados

  • databricks-cli 0.14.1 -> 0.14.3
  • horovod 0.21.1 -> 0.21.3
  • koalas 1.6.0 -> 1.7.0
  • mlflow 1.14.1 -> 1.15.0
  • shap 0.38.1 -> 0.39.0
  • torch 1.7.1 -> 1.8.1
  • torchvision 0.8.2 -> 0.9.1

Pacotes do Python adicionados

  • pandas-profiling: 2.11.0

Ambiente do sistema

O ambiente do sistema no Databricks Runtime 8.2 ML difere do Databricks Runtime 8.2 nestes pontos:

Bibliotecas

As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 8.2 ML que diferem daquelas incluídas no Databricks Runtime 8.2.

Nesta seção:

Bibliotecas de camada superior

O Databricks Runtime 8.2 ML inclui as seguintes bibliotecas de camada superior:

Bibliotecas do Python

O Databricks Runtime 8.2 ML usa o Conda para gerenciamento de pacotes do Python e inclui muitos pacotes de ML populares.

Além dos pacotes especificados nos ambientes do Conda nas seções a seguir, o Databricks Runtime 8.2 ML também inclui os seguintes pacotes:

  • hyperopt 0.2.5.db1
  • sparkdl 2.1.0.db4

Bibliotecas do Python em clusters de CPU

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - bzip2=1.0.8=h7b6447c_0
  - c-ares=1.17.1=h27cfd23_0
  - ca-certificates=2021.4.13=h06a4308_1 # (updated from 2021.1.19 in May 26, 2021 maintenance update)
  - cachetools=4.2.1=pyhd3eb1b0_0
  - certifi=2020.12.5=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cpuonly=1.0=0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - ffmpeg=4.2.2=h20bf706_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - future=0.18.2=py38_1
  - gitdb=4.0.5=py_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - gmp=6.1.2=h6c8ec71_1
  - gnutls=3.6.5=h71b1129_1002
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38h06a4308_0
  - h5py=2.10.0=py38h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lame=3.100=h7b6447c_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libopus=1.3.1=h7b6447c_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - libuv=1.40.0=h7b6447c_0
  - libvpx=1.7.0=h439df22_0
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - nettle=3.4.1=hbb512f6_0
  - networkx=2.5=py_0
  - ninja=1.10.2=py38hff7bd54_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openh264=2.1.0=hd408876_0
  - openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
  - packaging=20.4=py_0
  - pandas=1.1.3=py38he6710b0_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4 # (updated from 3.8.5 in May 26, 2021 maintenance update)
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytorch=1.8.1=py3.8_cpu_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - torchvision=0.9.1=py38_cpu
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - x264=1!157.20191217=h7b6447c_0
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - confuse==1.4.0
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - flatbuffers==1.12
    - gast==0.3.3
    - grpcio==1.32.0
    - horovod==0.21.3
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-preprocessing==1.1.2
    - koalas==1.7.0
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.16.1
    - mlflow-skinny==1.15.0
    - msrest==0.6.21
    - nbclient==0.5.3
    - nbconvert==6.0.7
    - nbformat==5.1.2
    - nest-asyncio==1.5.1
    - notebook==6.3.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==2.11.0
    - pandocfilters==1.4.3
    - petastorm==0.9.8
    - phik==0.11.2
    - prometheus-client==0.9.0
    - pyarrow==1.0.1
    - pyrsistent==0.17.3
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.5.0
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.0.7
    - tensorboard==2.4.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow-cpu==2.4.1
    - tensorflow-estimator==2.4.0
    - termcolor==1.1.0
    - terminado==0.9.4
    - testpath==0.4.4
    - visions==0.6.0
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.3.3
prefix: /databricks/conda/envs/databricks-ml

Bibliotecas do Python em clusters de GPU

name: databricks-ml-gpu
channels:
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - c-ares=1.17.1=h27cfd23_0
  - ca-certificates=2021.4.13=h06a4308_1 # (updated from 2021.1.19 in May 26, 2021 maintenance update)
  - cachetools=4.2.1=pyhd3eb1b0_0
  - certifi=2020.12.5=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - future=0.18.2=py38_1
  - gitdb=4.0.5=py_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.31.0=py38hf8bcb03_0
  - gunicorn=20.0.4=py38h06a4308_0
  - h5py=2.10.0=py38h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - networkx=2.5=py_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
  - packaging=20.4=py_0
  - pandas=1.1.3=py38he6710b0_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4 # (updated from 3.8.5 in May 26, 2021 maintenance update)
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - confuse==1.4.0
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - flatbuffers==1.12
    - gast==0.3.3
    - horovod==0.21.3
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-preprocessing==1.1.2
    - koalas==1.7.0
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.16.1
    - mlflow-skinny==1.15.0
    - msrest==0.6.21
    - nbclient==0.5.3
    - nbconvert==6.0.7
    - nbformat==5.1.2
    - nest-asyncio==1.5.1
    - notebook==6.3.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==2.11.0
    - pandocfilters==1.4.3
    - petastorm==0.9.8
    - phik==0.11.2
    - pyarrow==1.0.1
    - pyrsistent==0.17.3
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.5.0
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.0.7
    - tensorboard==2.4.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow==2.4.1
    - tensorflow-estimator==2.4.0
    - termcolor==1.1.0
    - terminado==0.9.4
    - testpath==0.4.4
    - torch==1.8.1
    - torchvision==0.9.1
    - visions==0.6.0
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.3.3
prefix: /databricks/conda/envs/databricks-ml-gpu

Pacotes do Spark que contêm módulos do Python

Pacote do Spark Módulo do Python Versão
graphframes graphframes 0.8.1-db2-spark3.1

Bibliotecas do R

As bibliotecas do R são idênticas às Bibliotecas do R existentes no Databricks Runtime 8.2.

Bibliotecas do Java e do Scala (cluster do Scala 2.12)

Além das bibliotecas do Java e do Scala no Databricks Runtime 8.2, o Databricks Runtime 8.2 ML contém os seguintes JARs:

Clusters de CPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.3.1
ml.dmlc xgboost4j_2.12 1.3.1
org.mlflow mlflow-client 1.15.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clusters de GPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark-gpu_2.12 1.3.1
ml.dmlc xgboost4j-gpu_2.12 1.3.1
org.mlflow mlflow-client 1.15.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0