Compartilhar via


AnomalyDetectorClient.DetectUnivariateLastPoint Método

Definição

Sobrecargas

DetectUnivariateLastPoint(UnivariateDetectionOptions, CancellationToken)

Detectar status de anomalias do ponto mais recente da série temporal.

DetectUnivariateLastPoint(RequestContent, RequestContext)

[Método protocol] Detectar status de anomalias do ponto mais recente da série temporal.

DetectUnivariateLastPoint(UnivariateDetectionOptions, CancellationToken)

Origem:
AnomalyDetectorClient.cs

Detectar status de anomalias do ponto mais recente da série temporal.

public virtual Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult> DetectUnivariateLastPoint (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPoint : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>
override this.DetectUnivariateLastPoint : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>
Public Overridable Function DetectUnivariateLastPoint (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Response(Of UnivariateLastDetectionResult)

Parâmetros

options
UnivariateDetectionOptions

Método de detecção de anomalias univariadas.

cancellationToken
CancellationToken

O token de cancelamento a ser usado.

Retornos

Exceções

options é nulo.

Exemplos

Este exemplo mostra como chamar DetectUnivariateLastPoint com os parâmetros necessários.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var options = new UnivariateDetectionOptions(new TimeSeriesPoint[] 
{
    new TimeSeriesPoint(3.14f)
{
        Timestamp = DateTimeOffset.UtcNow,
    }
})
{
    Granularity = TimeGranularity.Yearly,
    CustomInterval = 1234,
    Period = 1234,
    MaxAnomalyRatio = 3.14f,
    Sensitivity = 1234,
    ImputeMode = ImputeMode.Auto,
    ImputeFixedValue = 3.14f,
};
var result = client.DetectUnivariateLastPoint(options);

Comentários

Essa operação gera um modelo usando os pontos que você enviou para a API e com base em todos os dados para determinar se o último ponto é anormal.

Aplica-se a

DetectUnivariateLastPoint(RequestContent, RequestContext)

Origem:
AnomalyDetectorClient.cs

[Método protocol] Detectar status de anomalias do ponto mais recente da série temporal.

public virtual Azure.Response DetectUnivariateLastPoint (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPoint : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
override this.DetectUnivariateLastPoint : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
Public Overridable Function DetectUnivariateLastPoint (content As RequestContent, Optional context As RequestContext = Nothing) As Response

Parâmetros

content
RequestContent

O conteúdo a ser enviado como o corpo da solicitação.

context
RequestContext

O contexto de solicitação, que pode substituir os comportamentos padrão do pipeline do cliente por chamada.

Retornos

A resposta retornada do serviço.

Exceções

content é nulo.

O serviço retornou um código de status sem êxito.

Exemplos

Este exemplo mostra como chamar DetectUnivariateLastPoint com o conteúdo da solicitação necessário e como analisar o resultado.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            value = 123.45f,
        }
    },
};

Response response = client.DetectUnivariateLastPoint(RequestContent.Create(data));

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());

Este exemplo mostra como chamar DetectUnivariateLastPoint com todo o conteúdo da solicitação e como analisar o resultado.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            timestamp = "2022-05-10T14:57:31.2311892-04:00",
            value = 123.45f,
        }
    },
    granularity = "yearly",
    customInterval = 1234,
    period = 1234,
    maxAnomalyRatio = 123.45f,
    sensitivity = 1234,
    imputeMode = "auto",
    imputeFixedValue = 123.45f,
};

Response response = client.DetectUnivariateLastPoint(RequestContent.Create(data), new RequestContext());

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());

Comentários

Essa operação gera um modelo usando os pontos que você enviou para a API e com base em todos os dados para determinar se o último ponto é anormal.

Abaixo está o esquema JSON para as cargas de solicitação e resposta.

Corpo da solicitação:

Esquema para UnivariateDetectionOptions:

{
  series: [
    {
      timestamp: string (date & time), # Optional.
      value: number, # Required.
    }
  ], # Required.
  granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
  customInterval: number, # Optional.
  period: number, # Optional.
  maxAnomalyRatio: number, # Optional.
  sensitivity: number, # Optional.
  imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
  imputeFixedValue: number, # Optional.
}

Corpo da resposta:

Esquema para UnivariateLastDetectionResult:

{
  period: number, # Required.
  suggestedWindow: number, # Required.
  expectedValue: number, # Required.
  upperMargin: number, # Required.
  lowerMargin: number, # Required.
  isAnomaly: boolean, # Required.
  isNegativeAnomaly: boolean, # Required.
  isPositiveAnomaly: boolean, # Required.
  severity: number, # Optional.
}

Aplica-se a