Compartilhar via


FastForestRegressionTrainer Classe

Definição

Para IEstimator<TTransformer> treinar um modelo de regressão de árvore de decisão usando a Floresta Rápida.

public sealed class FastForestRegressionTrainer : Microsoft.ML.Trainers.FastTree.RandomForestTrainerBase<Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastForestRegressionModelParameters>,Microsoft.ML.Trainers.FastTree.FastForestRegressionModelParameters>
type FastForestRegressionTrainer = class
    inherit RandomForestTrainerBase<FastForestRegressionTrainer.Options, RegressionPredictionTransformer<FastForestRegressionModelParameters>, FastForestRegressionModelParameters>
Public NotInheritable Class FastForestRegressionTrainer
Inherits RandomForestTrainerBase(Of FastForestRegressionTrainer.Options, RegressionPredictionTransformer(Of FastForestRegressionModelParameters), FastForestRegressionModelParameters)
Herança

Comentários

Para criar esse treinador, use FastForest ou FastForest(Options).

Colunas de entrada e saída

Os dados da coluna de rótulo de entrada devem ser Single. Os dados da coluna de recursos de entrada devem ser um vetor de tamanho conhecido de Single.

Este treinador gera as seguintes colunas:

Nome da Coluna de Saída Tipo de coluna Descrição
Score Single A pontuação não associada prevista pelo modelo.

Características do Treinador

Ferramenta de machine learning Regressão
A normalização é necessária? No
O cache é necessário? No
NuGet necessário além de Microsoft.ML Microsoft.ML.FastTree
Exportável para ONNX Sim

Detalhes do algoritmo de treinamento

As árvores de decisão são modelos não paramétricos que executam uma sequência de testes simples em entradas. Esse procedimento de decisão as mapeia para as saídas encontradas no conjunto de dados de treinamento cujas entradas sejam semelhantes à instância que está sendo processada. Uma decisão é tomada em cada nó da estrutura de dados de árvore binária com base em uma medida de similaridade que mapeia cada instância recursivamente pelas ramificações da árvore até que o nó folha apropriado seja atingido e a decisão de saída seja retornada.

As árvores de decisão têm várias vantagens:

  • São eficientes no uso de memória e computação durante o treinamento e a previsão.
  • Podem representar limites de decisão não lineares.
  • Elas executam a seleção de recursos integrados e classificação.
  • Elas são flexíveis na presença de recursos com ruídos.

A floresta rápida é uma implementação de floresta aleatória. Esse modelo consiste em um conjunto de árvores de decisão. Cada árvore em uma floresta de decisão gera uma distribuição Gaussiana como forma de previsão. É realizada uma agregação no conjunto de árvores para encontrar uma distribuição gaussiana mais próxima da combinada para todas as árvores no modelo. Esse classificador de floresta de decisão consiste em um ensemble de árvores de decisão.

Em termos gerais, os modelos de ensemble fornecem melhor cobertura e precisão que árvores de decisão únicas. Cada árvore em uma floresta de decisão gera uma distribuição Gaussiana.

Para obter mais informações, consulte:

Verifique a seção Consulte Também para obter links para exemplos de uso.

Campos

FeatureColumn

A coluna de recursos que o treinador espera.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

A coluna groupID opcional que os treinadores de classificação esperam.

(Herdado de TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

A coluna de rótulo que o treinador espera. Pode ser null, o que indica que o rótulo não é usado para treinamento.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

A coluna de peso que o treinador espera. Pode ser null, o que indica que o peso não é usado para treinamento.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)

Propriedades

Info

Para IEstimator<TTransformer> treinar um modelo de regressão de árvore de decisão usando a Floresta Rápida.

(Herdado de FastTreeTrainerBase<TOptions,TTransformer,TModel>)

Métodos

Fit(IDataView, IDataView)

Treina um FastForestRegressionTrainer uso de dados de treinamento e validação, retorna um RegressionPredictionTransformer<TModel>.

Fit(IDataView)

Treina e retorna um ITransformer.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Para IEstimator<TTransformer> treinar um modelo de regressão de árvore de decisão usando a Floresta Rápida.

(Herdado de TrainerEstimatorBase<TTransformer,TModel>)

Métodos de Extensão

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Acrescente um "ponto de verificação de cache" à cadeia de estimativas. Isso garantirá que os estimadores downstream serão treinados em relação aos dados armazenados em cache. É útil ter um ponto de verificação de cache antes dos treinadores que fazem várias passagens de dados.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dado um estimador, retorne um objeto de encapsulamento que chamará um delegado uma vez Fit(IDataView) chamado. Geralmente, é importante que um estimador retorne informações sobre o que estava em forma, e é por isso que o Fit(IDataView) método retorna um objeto especificamente tipado, em vez de apenas um geral ITransformer. No entanto, ao mesmo tempo, IEstimator<TTransformer> muitas vezes são formados em pipelines com muitos objetos, portanto, talvez seja necessário construir uma cadeia de estimadores por meio EstimatorChain<TLastTransformer> de onde o estimador para o qual queremos que o transformador seja enterrado em algum lugar nesta cadeia. Para esse cenário, podemos por meio desse método anexar um delegado que será chamado quando fit for chamado.

Aplica-se a

Confira também