TaskScheduler Classe

Definição

Representa um objeto que manipula o trabalho de nível baixo de enfileirar tarefas em threads.

public ref class TaskScheduler abstract
public abstract class TaskScheduler
type TaskScheduler = class
Public MustInherit Class TaskScheduler
Herança
TaskScheduler

Exemplos

O exemplo a seguir cria um agendador de tarefas personalizado que limita o número de threads usados pelo aplicativo. Em seguida, ele inicia dois conjuntos de tarefas e exibe informações sobre a tarefa e o thread no qual a tarefa está sendo executada.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

class Example
{
   static void Main()
   {
       // Create a scheduler that uses two threads.
       LimitedConcurrencyLevelTaskScheduler lcts = new LimitedConcurrencyLevelTaskScheduler(2);
       List<Task> tasks = new List<Task>();

       // Create a TaskFactory and pass it our custom scheduler.
       TaskFactory factory = new TaskFactory(lcts);
       CancellationTokenSource cts = new CancellationTokenSource();

       // Use our factory to run a set of tasks.
       Object lockObj = new Object();
       int outputItem = 0;

       for (int tCtr = 0; tCtr <= 4; tCtr++) {
          int iteration = tCtr;
          Task t = factory.StartNew(() => {
                                       for (int i = 0; i < 1000; i++) {
                                          lock (lockObj) {
                                             Console.Write("{0} in task t-{1} on thread {2}   ",
                                                           i, iteration, Thread.CurrentThread.ManagedThreadId);
                                             outputItem++;
                                             if (outputItem % 3 == 0)
                                                Console.WriteLine();
                                          }
                                       }
                                    }, cts.Token);
          tasks.Add(t);
      }
      // Use it to run a second set of tasks.
      for (int tCtr = 0; tCtr <= 4; tCtr++) {
         int iteration = tCtr;
         Task t1 = factory.StartNew(() => {
                                       for (int outer = 0; outer <= 10; outer++) {
                                          for (int i = 0x21; i <= 0x7E; i++) {
                                             lock (lockObj) {
                                                Console.Write("'{0}' in task t1-{1} on thread {2}   ",
                                                              Convert.ToChar(i), iteration, Thread.CurrentThread.ManagedThreadId);
                                                outputItem++;
                                                if (outputItem % 3 == 0)
                                                   Console.WriteLine();
                                             }
                                          }
                                       }
                                    }, cts.Token);
         tasks.Add(t1);
      }

      // Wait for the tasks to complete before displaying a completion message.
      Task.WaitAll(tasks.ToArray());
      cts.Dispose();
      Console.WriteLine("\n\nSuccessful completion.");
   }
}

// Provides a task scheduler that ensures a maximum concurrency level while
// running on top of the thread pool.
public class LimitedConcurrencyLevelTaskScheduler : TaskScheduler
{
   // Indicates whether the current thread is processing work items.
   [ThreadStatic]
   private static bool _currentThreadIsProcessingItems;

  // The list of tasks to be executed
   private readonly LinkedList<Task> _tasks = new LinkedList<Task>(); // protected by lock(_tasks)

   // The maximum concurrency level allowed by this scheduler.
   private readonly int _maxDegreeOfParallelism;

   // Indicates whether the scheduler is currently processing work items.
   private int _delegatesQueuedOrRunning = 0;

   // Creates a new instance with the specified degree of parallelism.
   public LimitedConcurrencyLevelTaskScheduler(int maxDegreeOfParallelism)
   {
       if (maxDegreeOfParallelism < 1) throw new ArgumentOutOfRangeException("maxDegreeOfParallelism");
       _maxDegreeOfParallelism = maxDegreeOfParallelism;
   }

   // Queues a task to the scheduler.
   protected sealed override void QueueTask(Task task)
   {
      // Add the task to the list of tasks to be processed.  If there aren't enough
      // delegates currently queued or running to process tasks, schedule another.
       lock (_tasks)
       {
           _tasks.AddLast(task);
           if (_delegatesQueuedOrRunning < _maxDegreeOfParallelism)
           {
               ++_delegatesQueuedOrRunning;
               NotifyThreadPoolOfPendingWork();
           }
       }
   }

   // Inform the ThreadPool that there's work to be executed for this scheduler.
   private void NotifyThreadPoolOfPendingWork()
   {
       ThreadPool.UnsafeQueueUserWorkItem(_ =>
       {
           // Note that the current thread is now processing work items.
           // This is necessary to enable inlining of tasks into this thread.
           _currentThreadIsProcessingItems = true;
           try
           {
               // Process all available items in the queue.
               while (true)
               {
                   Task item;
                   lock (_tasks)
                   {
                       // When there are no more items to be processed,
                       // note that we're done processing, and get out.
                       if (_tasks.Count == 0)
                       {
                           --_delegatesQueuedOrRunning;
                           break;
                       }

                       // Get the next item from the queue
                       item = _tasks.First.Value;
                       _tasks.RemoveFirst();
                   }

                   // Execute the task we pulled out of the queue
                   base.TryExecuteTask(item);
               }
           }
           // We're done processing items on the current thread
           finally { _currentThreadIsProcessingItems = false; }
       }, null);
   }

   // Attempts to execute the specified task on the current thread.
   protected sealed override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued)
   {
       // If this thread isn't already processing a task, we don't support inlining
       if (!_currentThreadIsProcessingItems) return false;

       // If the task was previously queued, remove it from the queue
       if (taskWasPreviouslyQueued)
          // Try to run the task.
          if (TryDequeue(task))
            return base.TryExecuteTask(task);
          else
             return false;
       else
          return base.TryExecuteTask(task);
   }

   // Attempt to remove a previously scheduled task from the scheduler.
   protected sealed override bool TryDequeue(Task task)
   {
       lock (_tasks) return _tasks.Remove(task);
   }

   // Gets the maximum concurrency level supported by this scheduler.
   public sealed override int MaximumConcurrencyLevel { get { return _maxDegreeOfParallelism; } }

   // Gets an enumerable of the tasks currently scheduled on this scheduler.
   protected sealed override IEnumerable<Task> GetScheduledTasks()
   {
       bool lockTaken = false;
       try
       {
           Monitor.TryEnter(_tasks, ref lockTaken);
           if (lockTaken) return _tasks;
           else throw new NotSupportedException();
       }
       finally
       {
           if (lockTaken) Monitor.Exit(_tasks);
       }
   }
}
// The following is a portion of the output from a single run of the example:
//    'T' in task t1-4 on thread 3   'U' in task t1-4 on thread 3   'V' in task t1-4 on thread 3
//    'W' in task t1-4 on thread 3   'X' in task t1-4 on thread 3   'Y' in task t1-4 on thread 3
//    'Z' in task t1-4 on thread 3   '[' in task t1-4 on thread 3   '\' in task t1-4 on thread 3
//    ']' in task t1-4 on thread 3   '^' in task t1-4 on thread 3   '_' in task t1-4 on thread 3
//    '`' in task t1-4 on thread 3   'a' in task t1-4 on thread 3   'b' in task t1-4 on thread 3
//    'c' in task t1-4 on thread 3   'd' in task t1-4 on thread 3   'e' in task t1-4 on thread 3
//    'f' in task t1-4 on thread 3   'g' in task t1-4 on thread 3   'h' in task t1-4 on thread 3
//    'i' in task t1-4 on thread 3   'j' in task t1-4 on thread 3   'k' in task t1-4 on thread 3
//    'l' in task t1-4 on thread 3   'm' in task t1-4 on thread 3   'n' in task t1-4 on thread 3
//    'o' in task t1-4 on thread 3   'p' in task t1-4 on thread 3   ']' in task t1-2 on thread 4
//    '^' in task t1-2 on thread 4   '_' in task t1-2 on thread 4   '`' in task t1-2 on thread 4
//    'a' in task t1-2 on thread 4   'b' in task t1-2 on thread 4   'c' in task t1-2 on thread 4
//    'd' in task t1-2 on thread 4   'e' in task t1-2 on thread 4   'f' in task t1-2 on thread 4
//    'g' in task t1-2 on thread 4   'h' in task t1-2 on thread 4   'i' in task t1-2 on thread 4
//    'j' in task t1-2 on thread 4   'k' in task t1-2 on thread 4   'l' in task t1-2 on thread 4
//    'm' in task t1-2 on thread 4   'n' in task t1-2 on thread 4   'o' in task t1-2 on thread 4
//    'p' in task t1-2 on thread 4   'q' in task t1-2 on thread 4   'r' in task t1-2 on thread 4
//    's' in task t1-2 on thread 4   't' in task t1-2 on thread 4   'u' in task t1-2 on thread 4
//    'v' in task t1-2 on thread 4   'w' in task t1-2 on thread 4   'x' in task t1-2 on thread 4
//    'y' in task t1-2 on thread 4   'z' in task t1-2 on thread 4   '{' in task t1-2 on thread 4
//    '|' in task t1-2 on thread 4   '}' in task t1-2 on thread 4   '~' in task t1-2 on thread 4
//    'q' in task t1-4 on thread 3   'r' in task t1-4 on thread 3   's' in task t1-4 on thread 3
//    't' in task t1-4 on thread 3   'u' in task t1-4 on thread 3   'v' in task t1-4 on thread 3
//    'w' in task t1-4 on thread 3   'x' in task t1-4 on thread 3   'y' in task t1-4 on thread 3
//    'z' in task t1-4 on thread 3   '{' in task t1-4 on thread 3   '|' in task t1-4 on thread 3
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks

Module Example
   Sub Main()
      ' Create a scheduler that uses two threads. 
      Dim lcts As New LimitedConcurrencyLevelTaskScheduler(2)
      Dim tasks As New List(Of Task)()
      
      ' Create a TaskFactory and pass it our custom scheduler. 
      Dim factory As New TaskFactory(lcts)
      Dim cts As New CancellationTokenSource()
      
      ' Use our factory to run a set of tasks. 
      Dim objLock As New Object()      
      Dim outputItem As Integer 
      For tCtr As Integer = 0 To 4
         Dim iteration As Integer = tCtr
         Dim t As Task = factory.StartNew(Sub()
                                             For i As Integer = 1 To 1000
                                                SyncLock objLock
                                                   Console.Write("{0} in task t-{1} on thread {2}   ", 
                                                   i, iteration, Thread.CurrentThread.ManagedThreadId)
                                                   outputItem += 1
                                                   If outputItem Mod 3 = 0 Then Console.WriteLine()
                                                End SyncLock
                                             Next 
                                          End Sub,
                                cts.Token)
         tasks.Add(t)
      Next 
      ' Use it to run a second set of tasks.                       
      For tCtr As Integer = 0 To 4
         Dim iteration As Integer = tCtr
         Dim t1 As Task = factory.StartNew(Sub()
                                              For outer As Integer = 0 To 10
                                                 For i As Integer = &h21 To &h7E
                                                    SyncLock objLock
                                                       Console.Write("'{0}' in task t1-{1} on thread {2}   ", 
                                                                     Convert.ToChar(i), iteration, Thread.CurrentThread.ManagedThreadId)
                                                       outputItem += 1
                                                       If outputItem Mod 3 = 0 Then Console.WriteLine()
                                                    End SyncLock 
                                                 Next     
                                              Next                                           
                                           End Sub,
                                cts.Token)           
         tasks.Add(t1)
      Next
      
      ' Wait for the tasks to complete before displaying a completion message.
      Task.WaitAll(tasks.ToArray())
      cts.Dispose()
      Console.WriteLine(vbCrLf + vbCrLf + "Successful completion.")
   End Sub 
End Module

' Provides a task scheduler that ensures a maximum concurrency level while 
' running on top of the thread pool.
Public Class LimitedConcurrencyLevelTaskScheduler : Inherits TaskScheduler
   ' Indicates whether the current thread is processing work items.
   <ThreadStatic()> Private Shared _currentThreadIsProcessingItems As Boolean 
   
   ' The list of tasks to be executed 
   Private ReadOnly _tasks As LinkedList(Of Task) = New LinkedList(Of Task)() 
   
   'The maximum concurrency level allowed by this scheduler. 
   Private ReadOnly _maxDegreeOfParallelism As Integer 
   
   ' Indicates whether the scheduler is currently processing work items. 
   Private _delegatesQueuedOrRunning As Integer = 0 ' protected by lock(_tasks)
   
   ' Creates a new instance with the specified degree of parallelism. 
   Public Sub New(ByVal maxDegreeOfParallelism As Integer)
      If (maxDegreeOfParallelism < 1) Then 
         Throw New ArgumentOutOfRangeException("maxDegreeOfParallelism")
      End If
         _maxDegreeOfParallelism = maxDegreeOfParallelism
   End Sub 

   ' Queues a task to the scheduler. 
   Protected Overrides Sub QueueTask(ByVal t As Task)
      ' Add the task to the list of tasks to be processed.  If there aren't enough 
      ' delegates currently queued or running to process tasks, schedule another. 
      SyncLock (_tasks)
         _tasks.AddLast(t)
         If (_delegatesQueuedOrRunning < _maxDegreeOfParallelism) Then
            _delegatesQueuedOrRunning = _delegatesQueuedOrRunning + 1
            NotifyThreadPoolOfPendingWork()
         End If 
      End SyncLock 
   End Sub 
   
   ' Inform the ThreadPool that there's work to be executed for this scheduler. 
   Private Sub NotifyThreadPoolOfPendingWork()
   
      ThreadPool.UnsafeQueueUserWorkItem(Sub()
                                            ' Note that the current thread is now processing work items. 
                                            ' This is necessary to enable inlining of tasks into this thread.
                                            _currentThreadIsProcessingItems = True 
                                            Try 
                                               ' Process all available items in the queue. 
                                               While (True)
                                                  Dim item As Task
                                                  SyncLock (_tasks)
                                                     ' When there are no more items to be processed, 
                                                     ' note that we're done processing, and get out. 
                                                     If (_tasks.Count = 0) Then
                                                        _delegatesQueuedOrRunning = _delegatesQueuedOrRunning - 1
                                                        Exit While 
                                                     End If 
   
                                                     ' Get the next item from the queue
                                                     item = _tasks.First.Value
                                                     _tasks.RemoveFirst()
                                                  End SyncLock 
   
                                                  ' Execute the task we pulled out of the queue 
                                                  MyBase.TryExecuteTask(item)
                                               End While 
                                               ' We're done processing items on the current thread 
                                            Finally
                                               _currentThreadIsProcessingItems = False 
                                            End Try 
                                         End Sub,
                                    Nothing)
   End Sub 
   
   ' Attempts to execute the specified task on the current thread. 
   Protected Overrides Function TryExecuteTaskInline(ByVal t As Task, 
                                                     ByVal taskWasPreviouslyQueued As Boolean) As Boolean 
      ' If this thread isn't already processing a task, we don't support inlining 
      If (Not _currentThreadIsProcessingItems) Then 
         Return False 
      End If 
   
      ' If the task was previously queued, remove it from the queue 
      If (taskWasPreviouslyQueued) Then
         ' Try to run the task. 
         If TryDequeue(t) Then 
            Return MyBase.TryExecuteTask(t)
         Else
            Return False 
         End If     
      Else 
         Return MyBase.TryExecuteTask(t)
      End If   
   End Function 
   
   ' Attempt to remove a previously scheduled task from the scheduler. 
   Protected Overrides Function TryDequeue(ByVal t As Task) As Boolean 
      SyncLock (_tasks)
         Return _tasks.Remove(t)
      End SyncLock 
   End Function 
   
   ' Gets the maximum concurrency level supported by this scheduler. 
   Public Overrides ReadOnly Property MaximumConcurrencyLevel As Integer 
      Get 
         Return _maxDegreeOfParallelism
      End Get 
   End Property 
   
   ' Gets an enumerable of the tasks currently scheduled on this scheduler. 
   Protected Overrides Function GetScheduledTasks() As IEnumerable(Of Task)
      Dim lockTaken As Boolean = False 
      Try
         Monitor.TryEnter(_tasks, lockTaken)
         If (lockTaken) Then 
            Return _tasks.ToArray()
         Else 
            Throw New NotSupportedException()
         End If 
      Finally 
         If (lockTaken) Then
            Monitor.Exit(_tasks)
         End If 
      End Try 
   End Function 
End Class 
' The following is a portion of the output from a single run of the example:
'    'T' in task t1-4 on thread 3   'U' in task t1-4 on thread 3   'V' in task t1-4 on thread 3   
'    'W' in task t1-4 on thread 3   'X' in task t1-4 on thread 3   'Y' in task t1-4 on thread 3   
'    'Z' in task t1-4 on thread 3   '[' in task t1-4 on thread 3   '\' in task t1-4 on thread 3   
'    ']' in task t1-4 on thread 3   '^' in task t1-4 on thread 3   '_' in task t1-4 on thread 3   
'    '`' in task t1-4 on thread 3   'a' in task t1-4 on thread 3   'b' in task t1-4 on thread 3   
'    'c' in task t1-4 on thread 3   'd' in task t1-4 on thread 3   'e' in task t1-4 on thread 3   
'    'f' in task t1-4 on thread 3   'g' in task t1-4 on thread 3   'h' in task t1-4 on thread 3   
'    'i' in task t1-4 on thread 3   'j' in task t1-4 on thread 3   'k' in task t1-4 on thread 3   
'    'l' in task t1-4 on thread 3   'm' in task t1-4 on thread 3   'n' in task t1-4 on thread 3   
'    'o' in task t1-4 on thread 3   'p' in task t1-4 on thread 3   ']' in task t1-2 on thread 4   
'    '^' in task t1-2 on thread 4   '_' in task t1-2 on thread 4   '`' in task t1-2 on thread 4   
'    'a' in task t1-2 on thread 4   'b' in task t1-2 on thread 4   'c' in task t1-2 on thread 4   
'    'd' in task t1-2 on thread 4   'e' in task t1-2 on thread 4   'f' in task t1-2 on thread 4   
'    'g' in task t1-2 on thread 4   'h' in task t1-2 on thread 4   'i' in task t1-2 on thread 4   
'    'j' in task t1-2 on thread 4   'k' in task t1-2 on thread 4   'l' in task t1-2 on thread 4   
'    'm' in task t1-2 on thread 4   'n' in task t1-2 on thread 4   'o' in task t1-2 on thread 4   
'    'p' in task t1-2 on thread 4   'q' in task t1-2 on thread 4   'r' in task t1-2 on thread 4   
'    's' in task t1-2 on thread 4   't' in task t1-2 on thread 4   'u' in task t1-2 on thread 4   
'    'v' in task t1-2 on thread 4   'w' in task t1-2 on thread 4   'x' in task t1-2 on thread 4   
'    'y' in task t1-2 on thread 4   'z' in task t1-2 on thread 4   '{' in task t1-2 on thread 4   
'    '|' in task t1-2 on thread 4   '}' in task t1-2 on thread 4   '~' in task t1-2 on thread 4   
'    'q' in task t1-4 on thread 3   'r' in task t1-4 on thread 3   's' in task t1-4 on thread 3   
'    't' in task t1-4 on thread 3   'u' in task t1-4 on thread 3   'v' in task t1-4 on thread 3   
'    'w' in task t1-4 on thread 3   'x' in task t1-4 on thread 3   'y' in task t1-4 on thread 3   
'    'z' in task t1-4 on thread 3   '{' in task t1-4 on thread 3   '|' in task t1-4 on thread 3

Comentários

Uma instância da TaskScheduler classe representa um agendador de tarefas. Um agendador de tarefas garante que o trabalho de uma tarefa seja eventualmente executado.

O agendador de tarefas padrão baseia-se no pool de threads .NET Framework 4, que fornece roubo de trabalho para balanceamento de carga, injeção/desativação de thread para taxa de transferência máxima e bom desempenho geral. Deve ser suficiente para a maioria dos cenários.

A TaskScheduler classe também serve como o ponto de extensão para toda a lógica de agendamento personalizável. Isso inclui mecanismos como como agendar uma tarefa para execução e como as tarefas agendadas devem ser expostas aos depuradores. Se você precisar de funcionalidade especial, poderá criar um agendador personalizado e habilitá-lo para tarefas ou consultas específicas.

Neste artigo:

O agendador de tarefas padrão e o pool de threads
A fila global versus filas locais
Roubo de trabalho
Tarefas de execução prolongada
Inlining de tarefa
Especificando um contexto de sincronização

O agendador de tarefas padrão e o pool de threads

O agendador padrão da Biblioteca Paralela de Tarefas e do PLINQ usa o pool de threads do .NET, que é representado pela ThreadPool classe, para enfileirar e executar o trabalho. O pool de threads usa as informações fornecidas pelo Task tipo para dar suporte eficiente ao paralelismo refinado (unidades de trabalho de curta duração) que tarefas e consultas paralelas geralmente representam.

A fila global versus filas locais

O pool de threads mantém uma fila de trabalho fifo global (primeiro a entrar, primeiro a sair) para threads em cada domínio do aplicativo. Sempre que um programa chama o ThreadPool.QueueUserWorkItem método (ou ThreadPool.UnsafeQueueUserWorkItem), o trabalho é colocado nessa fila compartilhada e, eventualmente, desativado na fila para o próximo thread que se torna disponível. Começando com .NET Framework 4, essa fila usa um algoritmo sem bloqueio que se assemelha à ConcurrentQueue<T> classe . Ao usar essa implementação sem bloqueio, o pool de threads gasta menos tempo quando enfileira e desnexa itens de trabalho. Esse benefício de desempenho está disponível para todos os programas que usam o pool de threads.

Tarefas de nível superior, que são tarefas que não são criadas no contexto de outra tarefa, são colocadas na fila global como qualquer outro item de trabalho. No entanto, as tarefas aninhadas ou filho, que são criadas no contexto de outra tarefa, são tratadas de maneira bem diferente. Uma tarefa filho ou aninhada é colocada em uma fila local específica do thread no qual a tarefa pai está sendo executada. A tarefa pai pode ser uma tarefa de nível superior ou também pode ser o filho de outra tarefa. Quando esse thread está pronto para mais trabalho, ele primeiro procura na fila local. Se os itens de trabalho estiverem aguardando lá, eles poderão ser acessados rapidamente. As filas locais são acessadas em LIFO (ordem de última entrada e primeira saída) para preservar a localidade do cache e reduzir a contenção. Para obter mais informações sobre tarefas filho e tarefas aninhadas, consulte Tarefas filho anexadas e desanexadas.

O uso de filas locais não apenas reduz a pressão sobre a fila global, mas também aproveita a localidade dos dados. Os itens de trabalho na fila local frequentemente fazem referência a estruturas de dados que estão fisicamente próximas umas das outras na memória. Nesses casos, os dados já estão no cache após a execução da primeira tarefa e podem ser acessados rapidamente. Tanto o PARALLEL LINQ (PLINQ) quanto a Parallel classe usam tarefas aninhadas e tarefas filho extensivamente e alcançam acelerações significativas usando as filas de trabalho locais.

Roubo de trabalho

A partir do .NET Framework 4, o pool de threads também apresenta um algoritmo de roubo de trabalho para ajudar a garantir que nenhum thread fique ocioso enquanto outros ainda têm trabalho em suas filas. Quando um thread de pool de threads está pronto para mais trabalho, ele primeiro examina o cabeçalho de sua fila local, depois na fila global e, em seguida, nas filas locais de outros threads. Se encontrar um item de trabalho na fila local de outro thread, ele primeiro aplicará heurística para garantir que ele possa executar o trabalho com eficiência. Se puder, ele desativa o item de trabalho da parte final (na ordem FIFO). Isso reduz a contenção em cada fila local e preserva a localidade dos dados. Essa arquitetura ajuda o trabalho de balanceamento de carga do pool de threads com mais eficiência do que as versões anteriores.

Tarefas de execução prolongada

Talvez você queira impedir explicitamente que uma tarefa seja colocada em uma fila local. Por exemplo, você pode saber que um item de trabalho específico será executado por um tempo relativamente longo e provavelmente bloqueará todos os outros itens de trabalho na fila local. Nesse caso, você pode especificar a opção System.Threading.Tasks.TaskCreationOptions , que fornece uma dica para o agendador de que um thread adicional pode ser necessário para a tarefa para que ele não bloqueie o progresso de outros threads ou itens de trabalho na fila local. Usando essa opção, você evita completamente o pool de threads, incluindo as filas globais e locais.

Inlining de tarefa

Em alguns casos, quando um Task é aguardado, ele pode ser executado de forma síncrona no thread que está executando a operação de espera. Isso melhora o desempenho impedindo a necessidade de um thread adicional e, em vez disso, usando o thread existente, que teria bloqueado de outra forma. Para evitar erros devido à reentrância, a inlining da tarefa só ocorre quando o destino de espera é encontrado na fila local do thread relevante.

Especificando um contexto de sincronização

Você pode usar o TaskScheduler.FromCurrentSynchronizationContext método para especificar que uma tarefa deve ser agendada para ser executada em um thread específico. Isso é útil em estruturas como Windows Forms e Windows Presentation Foundation em que o acesso a objetos de interface do usuário geralmente é restrito ao código que está em execução no mesmo thread no qual o objeto de interface do usuário foi criado.

O exemplo a seguir usa o TaskScheduler.FromCurrentSynchronizationContext método em um aplicativo Windows Presentation Foundation (WPF) para agendar uma tarefa no mesmo thread no qual o controle de interface do usuário foi criado. O exemplo cria um mosaico de imagens que são selecionadas aleatoriamente de um diretório especificado. Os objetos WPF são usados para carregar e redimensionar as imagens. Os pixels brutos são então passados para uma tarefa que usa um For loop para gravar os dados de pixel em uma grande matriz de bytes únicos. Nenhuma sincronização é necessária porque nenhum bloco ocupa os mesmos elementos de matriz. Os blocos também podem ser gravados em qualquer ordem porque sua posição é calculada independentemente de qualquer outro bloco. A matriz grande é então passada para uma tarefa que é executada no thread da interface do usuário, em que os dados de pixel são carregados em um controle Image.

O exemplo move os dados do thread da interface do usuário, modifica-os usando loops e Task objetos paralelos e, em seguida, os passa de volta para uma tarefa que é executada no thread da interface do usuário. Essa abordagem é útil quando você precisa usar a Biblioteca Paralela de Tarefas para executar operações que não têm suporte na API do WPF ou não são suficientemente rápidas. Outra maneira de criar um mosaico de imagem no WPF é usar um System.Windows.Controls.WrapPanel controle e adicionar imagens a ele. O WrapPanel manipula o trabalho de posicionar os blocos. No entanto, esse trabalho só pode ser executado no thread da interface do usuário.

using System;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Imaging;

namespace WPF_CS1
{
    /// <summary>
    /// Interaction logic for MainWindow.xaml
    /// </summary>
    public partial class MainWindow : Window
    {
        private int fileCount;
        int colCount;
        int rowCount;
        private int tilePixelHeight;
        private int tilePixelWidth;
        private int largeImagePixelHeight;
        private int largeImagePixelWidth;
        private int largeImageStride;
        PixelFormat format;
        BitmapPalette palette = null;

        public MainWindow()
        {
            InitializeComponent();

            // For this example, values are hard-coded to a mosaic of 8x8 tiles.
            // Each tile is 50 pixels high and 66 pixels wide and 32 bits per pixel.
            colCount = 12;
            rowCount = 8;
            tilePixelHeight = 50;
            tilePixelWidth = 66;
            largeImagePixelHeight = tilePixelHeight * rowCount;
            largeImagePixelWidth = tilePixelWidth * colCount;
            largeImageStride = largeImagePixelWidth * (32 / 8);
            this.Width = largeImagePixelWidth + 40;
            image.Width = largeImagePixelWidth;
            image.Height = largeImagePixelHeight;
        }

        private void button_Click(object sender, RoutedEventArgs e)
        {

            // For best results use 1024 x 768 jpg files at 32bpp.
            string[] files = System.IO.Directory.GetFiles(@"C:\Users\Public\Pictures\Sample Pictures\", "*.jpg");

            fileCount = files.Length;
            Task<byte[]>[] images = new Task<byte[]>[fileCount];
            for (int i = 0; i < fileCount; i++)
            {
                int x = i;
                images[x] = Task.Factory.StartNew(() => LoadImage(files[x]));
            }

            // When they've all been loaded, tile them into a single byte array.
            var tiledImage = Task.Factory.ContinueWhenAll(
                images, (i) => TileImages(i));

            // We are currently on the UI thread. Save the sync context and pass it to
            // the next task so that it can access the UI control "image".
            var UISyncContext = TaskScheduler.FromCurrentSynchronizationContext();

            // On the UI thread, put the bytes into a bitmap and
            // display it in the Image control.
            var t3 = tiledImage.ContinueWith((antecedent) =>
            {
                // Get System DPI.
                Matrix m = PresentationSource.FromVisual(Application.Current.MainWindow)
                                            .CompositionTarget.TransformToDevice;
                double dpiX = m.M11;
                double dpiY = m.M22;

                BitmapSource bms = BitmapSource.Create(largeImagePixelWidth,
                    largeImagePixelHeight,
                    dpiX,
                    dpiY,
                    format,
                    palette, //use default palette
                    antecedent.Result,
                    largeImageStride);
                image.Source = bms;
            }, UISyncContext);
        }

        byte[] LoadImage(string filename)
        {
            // Use the WPF BitmapImage class to load and
            // resize the bitmap. NOTE: Only 32bpp formats are supported correctly.
            // Support for additional color formats is left as an exercise
            // for the reader. For more information, see documentation for ColorConvertedBitmap.

            BitmapImage bitmapImage = new BitmapImage();
            bitmapImage.BeginInit();
            bitmapImage.UriSource = new Uri(filename);
            bitmapImage.DecodePixelHeight = tilePixelHeight;
            bitmapImage.DecodePixelWidth = tilePixelWidth;
            bitmapImage.EndInit();

            format = bitmapImage.Format;
            int size = (int)(bitmapImage.Height * bitmapImage.Width);
            int stride = (int)bitmapImage.Width * 4;
            byte[] dest = new byte[stride * tilePixelHeight];

            bitmapImage.CopyPixels(dest, stride, 0);

            return dest;
        }

        int Stride(int pixelWidth, int bitsPerPixel)
        {
            return (((pixelWidth * bitsPerPixel + 31) / 32) * 4);
        }

        // Map the individual image tiles to the large image
        // in parallel. Any kind of raw image manipulation can be
        // done here because we are not attempting to access any
        // WPF controls from multiple threads.
        byte[] TileImages(Task<byte[]>[] sourceImages)
        {
            byte[] largeImage = new byte[largeImagePixelHeight * largeImageStride];
            int tileImageStride = tilePixelWidth * 4; // hard coded to 32bpp

            Random rand = new Random();
            Parallel.For(0, rowCount * colCount, (i) =>
            {
                // Pick one of the images at random for this tile.
                int cur = rand.Next(0, sourceImages.Length);
                byte[] pixels = sourceImages[cur].Result;

                // Get the starting index for this tile.
                int row = i / colCount;
                int col = (int)(i % colCount);
                int idx = ((row * (largeImageStride * tilePixelHeight)) + (col * tileImageStride));

                // Write the pixels for the current tile. The pixels are not contiguous
                // in the array, therefore we have to advance the index by the image stride
                // (minus the stride of the tile) for each scanline of the tile.
                int tileImageIndex = 0;
                for (int j = 0; j < tilePixelHeight; j++)
                {
                    // Write the next scanline for this tile.
                    for (int k = 0; k < tileImageStride; k++)
                    {
                        largeImage[idx++] = pixels[tileImageIndex++];
                    }
                    // Advance to the beginning of the next scanline.
                    idx += largeImageStride - tileImageStride;
                }
            });
            return largeImage;
        }
    }
}
Imports System.Threading.Tasks
Imports System.Windows
Imports System.Windows.Media
Imports System.Windows.Media.Imaging

Partial Public Class MainWindow : Inherits Window
    Dim fileCount As Integer
    Dim colCount As Integer
    Dim rowCount As Integer
    Dim tilePixelHeight As Integer
    Dim tilePixelWidth As Integer
    Dim largeImagePixelHeight As Integer
    Dim largeImagePixelWidth As Integer
    Dim largeImageStride As Integer
    Dim format As PixelFormat
    Dim palette As BitmapPalette = Nothing

    Public Sub New()
        InitializeComponent()

        ' For this example, values are hard-coded to a mosaic of 8x8 tiles.
        ' Each tile Is 50 pixels high and 66 pixels wide and 32 bits per pixel.
        colCount = 12
        rowCount = 8
        tilePixelHeight = 50
        tilePixelWidth = 66
        largeImagePixelHeight = tilePixelHeight * rowCount
        largeImagePixelWidth = tilePixelWidth * colCount
        largeImageStride = largeImagePixelWidth * (32 / 8)
        Me.Width = largeImagePixelWidth + 40
        image.Width = largeImagePixelWidth
        image.Height = largeImagePixelHeight
    End Sub

    Private Sub button_Click(sender As Object, e As RoutedEventArgs) _
        Handles button.Click

        ' For best results use 1024 x 768 jpg files at 32bpp.
        Dim files() As String = System.IO.Directory.GetFiles("C:\Users\Public\Pictures\Sample Pictures\", "*.jpg")

        fileCount = files.Length
        Dim images(fileCount - 1) As Task(Of Byte())
        For i As Integer = 0 To fileCount - 1
            Dim x As Integer = i
            images(x) = Task.Factory.StartNew(Function() LoadImage(files(x)))
        Next

        ' When they have all been loaded, tile them into a single byte array.
        'var tiledImage = Task.Factory.ContinueWhenAll(
        '        images, (i) >= TileImages(i));

        '        Dim tiledImage As Task(Of Byte()) = Task.Factory.ContinueWhenAll(images, Function(i As Task(Of Byte())) TileImages(i))
        Dim tiledImage = Task.Factory.ContinueWhenAll(images, Function(i As Task(Of Byte())()) TileImages(i))
        ' We are currently on the UI thread. Save the sync context and pass it to
        ' the next task so that it can access the UI control "image1".
        Dim UISyncContext = TaskScheduler.FromCurrentSynchronizationContext()

        ' On the UI thread, put the bytes into a bitmap and
        ' display it in the Image control.
        Dim t3 = tiledImage.ContinueWith(Sub(antecedent)
                                             ' Get System DPI.
                                             Dim m As Matrix = PresentationSource.FromVisual(Application.Current.MainWindow).CompositionTarget.TransformToDevice
                                             Dim dpiX As Double = m.M11
                                             Dim dpiY As Double = m.M22

                                             ' Use the default palette in creating the bitmap.
                                             Dim bms As BitmapSource = BitmapSource.Create(largeImagePixelWidth,
                                                                                           largeImagePixelHeight,
                                             dpiX,
                                             dpiY,
                                             format,
                                             palette,
                                             antecedent.Result,
                                             largeImageStride)
                                             image.Source = bms
                                         End Sub, UISyncContext)
    End Sub

    Public Function LoadImage(filename As String) As Byte()
        ' Use the WPF BitmapImage class to load and 
        ' resize the bitmap. NOTE: Only 32bpp formats are supported correctly.
        ' Support for additional color formats Is left as an exercise
        ' for the reader. For more information, see documentation for ColorConvertedBitmap.
        Dim bitmapImage As New BitmapImage()
        bitmapImage.BeginInit()
        bitmapImage.UriSource = New Uri(filename)
        bitmapImage.DecodePixelHeight = tilePixelHeight
        bitmapImage.DecodePixelWidth = tilePixelWidth
        bitmapImage.EndInit()

        format = bitmapImage.Format
        Dim size As Integer = CInt(bitmapImage.Height * bitmapImage.Width)
        Dim stride As Integer = CInt(bitmapImage.Width * 4)
        Dim dest(stride * tilePixelHeight - 1) As Byte

        bitmapImage.CopyPixels(dest, stride, 0)

        Return dest
    End Function

    Function Stride(pixelWidth As Integer, bitsPerPixel As Integer) As Integer
        Return (((pixelWidth * bitsPerPixel + 31) / 32) * 4)
    End Function

    ' Map the individual image tiles to the large image
    ' in parallel. Any kind of raw image manipulation can be
    ' done here because we are Not attempting to access any 
    ' WPF controls from multiple threads.
    Function TileImages(sourceImages As Task(Of Byte())()) As Byte()
        Dim largeImage(largeImagePixelHeight * largeImageStride - 1) As Byte
        Dim tileImageStride As Integer = tilePixelWidth * 4 ' hard coded To 32bpp

        Dim rand As New Random()
        Parallel.For(0, rowCount * colCount, Sub(i)
                                                 ' Pick one of the images at random for this tile.
                                                 Dim cur As Integer = rand.Next(0, sourceImages.Length)
                                                 Dim pixels() As Byte = sourceImages(cur).Result

                                                 ' Get the starting index for this tile.
                                                 Dim row As Integer = i \ colCount
                                                 Dim col As Integer = i Mod colCount
                                                 Dim idx As Integer = ((row * (largeImageStride * tilePixelHeight)) + (col * tileImageStride))

                                                 ' Write the pixels for the current tile. The pixels are Not contiguous
                                                 ' in the array, therefore we have to advance the index by the image stride
                                                 ' (minus the stride of the tile) for each scanline of the tile.
                                                 Dim tileImageIndex As Integer = 0
                                                 For j As Integer = 0 To tilePixelHeight - 1
                                                     ' Write the next scanline for this tile.
                                                     For k As Integer = 0 To tileImageStride - 1
                                                         largeImage(idx) = pixels(tileImageIndex)
                                                         idx += 1
                                                         tileImageIndex += 1
                                                     Next
                                                     ' Advance to the beginning of the next scanline.
                                                     idx += largeImageStride - tileImageStride
                                                 Next
                                             End Sub)
        Return largeImage
    End Function
End Class

Para criar o exemplo, crie um projeto de aplicativo WPF no Visual Studio e nomeie-o WPF_CS1 (para um projeto do WPF em C#) ou WPF_VB1 (para um projeto do WPF do Visual Basic). Faremos o seguinte:

  1. No modo de exibição de design, arraste um Image controle da Caixa de Ferramentas para o canto superior esquerdo da superfície de design. Na caixa de texto Nome da janela Propriedades , nomeie o controle como "imagem".

  2. Arraste um Button controle da Caixa de Ferramentas para a parte inferior esquerda da janela do aplicativo. No modo de exibição XAML, especifique a Content propriedade do botão como "Criar um mosaico" e especifique sua Width propriedade como "100". Conecte o Click evento com o button_Click manipulador de eventos definido no código do exemplo adicionando Click="button_Click" ao <Button> elemento . Na caixa de texto Nome da janela Propriedades , nomeie o controle como "botão".

  3. Substitua todo o conteúdo do arquivo MainWindow.xaml.cs ou MainWindow.xaml.vb pelo código deste exemplo. Para um projeto WPF em C#, verifique se o nome do workspace corresponde ao nome do projeto.

  4. O exemplo lê imagens JPEG de um diretório chamado C:\Users\Public\Pictures\Sample Pictures\. Crie o diretório e coloque algumas imagens nele ou altere o caminho para se referir a algum outro diretório que contenha imagens.

Este exemplo tem algumas limitações. Por exemplo, há suporte apenas para imagens de 32 bits por pixel; imagens em outros formatos são corrompidas pelo BitmapImage objeto durante a operação de redimensionamento. Além disso, as imagens de origem devem ser todas maiores que o tamanho do bloco. Como um exercício adicional, você pode adicionar funcionalidade para lidar com vários formatos de pixel e tamanhos de arquivo.

Construtores

TaskScheduler()

Inicializa o TaskScheduler.

Propriedades

Current

Obtém o TaskScheduler associado à tarefa em execução no momento.

Default

Obtém a instância TaskScheduler padrão fornecida pelo .NET.

Id

Obtém a ID exclusiva para este TaskScheduler.

MaximumConcurrencyLevel

Indica o nível de simultaneidade máximo ao qual esse TaskScheduler pode dar suporte.

Métodos

Equals(Object)

Determina se o objeto especificado é igual ao objeto atual.

(Herdado de Object)
Finalize()

Libera todos os recursos associados ao agendador.

FromCurrentSynchronizationContext()

Cria um TaskScheduler associado ao SynchronizationContext atual.

GetHashCode()

Serve como a função de hash padrão.

(Herdado de Object)
GetScheduledTasks()

Apenas para o suporte do depurador, gera um enumerável de instâncias Task atualmente na fila do Agendador aguardando ser executado.

GetType()

Obtém o Type da instância atual.

(Herdado de Object)
MemberwiseClone()

Cria uma cópia superficial do Object atual.

(Herdado de Object)
QueueTask(Task)

Enfileira um Task no agendador.

ToString()

Retorna uma cadeia de caracteres que representa o objeto atual.

(Herdado de Object)
TryDequeue(Task)

Tenta remover da fila um Task que anteriormente havia sido enfileirado para esse agendador.

TryExecuteTask(Task)

Tenta executar o Task fornecido neste agendador.

TryExecuteTaskInline(Task, Boolean)

Determina se o Task fornecido pode ser executado de forma síncrona nessa chamada e, se for possível, o executa.

Eventos

UnobservedTaskException

Ocorre quando a exceção não observada da tarefa com falha está prestes a disparar a política de escalonamento de exceção, que, por padrão, encerrará o processo.

Aplica-se a

Acesso thread-safe

Todos os membros do tipo abstrato TaskScheduler são thread-safe e podem ser usados de vários threads simultaneamente.

Confira também