StandardTrainersCatalog.AveragedPerceptron Метод
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Перегрузки
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options) |
AveragedPerceptronTrainer Создайте с расширенными параметрами, которые прогнозируют целевой объект с помощью модели линейной двоичной классификации, обученной по данным логических меток. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32) |
Создайте объект AveragedPerceptronTrainer, который прогнозирует целевой объект с помощью модели линейной двоичной классификации, обученной по данным логических меток. |
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options)
AveragedPerceptronTrainer Создайте с расширенными параметрами, которые прогнозируют целевой объект с помощью модели линейной двоичной классификации, обученной по данным логических меток.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options options);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.AveragedPerceptronTrainer.Options -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As AveragedPerceptronTrainer.Options) As AveragedPerceptronTrainer
Параметры
Объект обучения каталога двоичной классификации.
Параметры тренера.
Возвращаемое значение
Примеры
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptronWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new AveragedPerceptronTrainer.Options
{
LossFunction = new SmoothedHingeLoss(),
LearningRate = 0.1f,
LazyUpdate = false,
RecencyGain = 0.1f,
NumberOfIterations = 10
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.89
// AUC: 0.96
// F1 Score: 0.88
// Negative Precision: 0.87
// Negative Recall: 0.92
// Positive Precision: 0.91
// Positive Recall: 0.85
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Применяется к
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
Создайте объект AveragedPerceptronTrainer, который прогнозирует целевой объект с помощью модели линейной двоичной классификации, обученной по данным логических меток.
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 10);
public static Microsoft.ML.Trainers.AveragedPerceptronTrainer AveragedPerceptron (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", Microsoft.ML.Trainers.IClassificationLoss lossFunction = default, float learningRate = 1, bool decreaseLearningRate = false, float l2Regularization = 0, int numberOfIterations = 1);
static member AveragedPerceptron : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * Microsoft.ML.Trainers.IClassificationLoss * single * bool * single * int -> Microsoft.ML.Trainers.AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 10) As AveragedPerceptronTrainer
<Extension()>
Public Function AveragedPerceptron (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional lossFunction As IClassificationLoss = Nothing, Optional learningRate As Single = 1, Optional decreaseLearningRate As Boolean = false, Optional l2Regularization As Single = 0, Optional numberOfIterations As Integer = 1) As AveragedPerceptronTrainer
Параметры
Объект обучения каталога двоичной классификации.
- featureColumnName
- String
Имя столбца компонента. Данные столбца должны быть вектором известного Singleразмера.
- lossFunction
- IClassificationLoss
Функция потери сведена к минимуму в процессе обучения. Если null
, HingeLoss будет использоваться и привести к максимальному марже среднего перцептронного тренера.
- learningRate
- Single
Начальная скорость обучения, используемая службой JSON.
- decreaseLearningRate
- Boolean
true
Значение learningRate
, false
чтобы уменьшить ход выполнения итераций; в противном случае .
По умолчанию — false
.
- l2Regularization
- Single
Вес L2 для нормализации.
- numberOfIterations
- Int32
Количество проходов по набору данных для обучения.
Возвращаемое значение
Примеры
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class AveragedPerceptron
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: False
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.72
// AUC: 0.79
// F1 Score: 0.68
// Negative Precision: 0.71
// Negative Recall: 0.80
// Positive Precision: 0.74
// Positive Recall: 0.63
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 151 | 87 | 0.6345
// negative || 53 | 209 | 0.7977
// ||======================
// Precision || 0.7402 | 0.7061 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}