Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
MLflow-experimentdatakällan tillhandahåller ett standard-API för att läsa in MLflow-experimentkörningsdata. Du kan läsa in data från notebook-experimenteteller använda MLflow-experimentets namn eller experiment-ID.
Krav
Databricks Runtime 6.0 ML eller senare.
Läsa in data från notebook-experimentet
Om du vill läsa in data från notebook-experimentet använder du load()
.
Python
df = spark.read.format("mlflow-experiment").load()
display(df)
Scala
val df = spark.read.format("mlflow-experiment").load()
display(df)
Läsa in data med hjälp av experiment-ID:t
Om du vill läsa in data från ett eller flera arbetsyteexperiment anger du experiment-ID:t enligt bilden.
Python
df = spark.read.format("mlflow-experiment").load("3270527066281272")
display(df)
Scala
val df = spark.read.format("mlflow-experiment").load("3270527066281272,953590262154175")
display(df)
Ladda data med experimentnamn
Du kan också skicka experimentnamnet till metoden load()
.
Python
expId = mlflow.get_experiment_by_name("/Shared/diabetes_experiment/").experiment_id
df = spark.read.format("mlflow-experiment").load(expId)
display(df)
Scala
val expId = mlflow.getExperimentByName("/Shared/diabetes_experiment/").get.getExperimentId
val df = spark.read.format("mlflow-experiment").load(expId)
display(df)
Filtrera data baserat på mått och parametrar
Exemplen i det här avsnittet visar hur du kan filtrera data när du har läst in dem från ett experiment.
Python
df = spark.read.format("mlflow-experiment").load("3270527066281272")
filtered_df = df.filter("metrics.loss < 0.01 AND params.learning_rate > '0.001'")
display(filtered_df)
Scala
val df = spark.read.format("mlflow-experiment").load("3270527066281272")
val filtered_df = df.filter("metrics.loss < 1.85 AND params.num_epochs > '30'")
display(filtered_df)
Schemat
Schemat för dataramen som returneras av datakällan är:
root
|-- run_id: string
|-- experiment_id: string
|-- metrics: map
| |-- key: string
| |-- value: double
|-- params: map
| |-- key: string
| |-- value: string
|-- tags: map
| |-- key: string
| |-- value: string
|-- start_time: timestamp
|-- end_time: timestamp
|-- status: string
|-- artifact_uri: string