BoostedTreeOptions
|
Options for boosting tree trainers.
|
BoostingFastTreeTrainerBase<TOptions,TTransformer,TModel>
|
ConsecutiveGeneralityLossRule
|
Consecutive Loss in Generality (UP).
|
EarlyStoppingRule
|
EarlyStoppingRuleBase
|
Early stopping rule used to terminate training process once meeting a specified criterion.
Used for setting EarlyStoppingRuleEarlyStoppingRule.
|
FastForestBinaryFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastForestBinaryFeaturizationEstimator.Options
|
Options for the FastForestBinaryFeaturizationEstimator.
|
FastForestBinaryModelParameters
|
Model parameters for FastForestBinaryTrainer.
|
FastForestBinaryTrainer
|
The IEstimator<TTransformer> for training a decision tree binary classification model using Fast Forest.
|
FastForestBinaryTrainer.Options
|
Options for the FastForestBinaryTrainer as used in
FastForest(Options).
|
FastForestOptionsBase
|
Base class for fast forest trainer options.
|
FastForestRegressionFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastForestRegressionFeaturizationEstimator.Options
|
Options for the FastForestRegressionFeaturizationEstimator.
|
FastForestRegressionModelParameters
|
Model parameters for FastForestRegressionTrainer.
|
FastForestRegressionTrainer
|
The IEstimator<TTransformer> for training a decision tree regression model using Fast Forest.
|
FastForestRegressionTrainer.Options
|
Options for the FastForestRegressionTrainer as used in
FastForest(Options).
|
FastTreeBinaryFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastTreeBinaryFeaturizationEstimator.Options
|
Options for the FastTreeBinaryFeaturizationEstimator.
|
FastTreeBinaryModelParameters
|
Model parameters for FastTreeBinaryTrainer.
|
FastTreeBinaryTrainer
|
The IEstimator<TTransformer> for training a decision tree binary classification model using FastTree.
|
FastTreeBinaryTrainer.Options
|
Options for the FastTreeBinaryTrainer as used in
FastTree(Options).
|
FastTreeRankingFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastTreeRankingFeaturizationEstimator.Options
|
Options for the FastTreeRankingFeaturizationEstimator.
|
FastTreeRankingModelParameters
|
Model parameters for FastTreeRankingTrainer.
|
FastTreeRankingTrainer
|
The IEstimator<TTransformer> for training a decision tree ranking model using FastTree.
|
FastTreeRankingTrainer.Options
|
Options for the FastTreeRankingTrainer as used in
FastTree(Options).
|
FastTreeRegressionFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastTreeRegressionFeaturizationEstimator.Options
|
Options for the FastTreeRegressionFeaturizationEstimator.
|
FastTreeRegressionModelParameters
|
Model parameters for FastForestRegressionTrainer.
|
FastTreeRegressionTrainer
|
The IEstimator<TTransformer> for training a decision tree regression model using FastTree.
|
FastTreeRegressionTrainer.Options
|
Options for the FastTreeRegressionTrainer as used in
FastTree(Options).
|
FastTreeTrainerBase<TOptions,TTransformer,TModel>
|
FastTreeTweedieFeaturizationEstimator
|
A IEstimator<TTransformer> to transform input feature vector to tree-based features.
|
FastTreeTweedieFeaturizationEstimator.Options
|
Options for the FastTreeTweedieFeaturizationEstimator.
|
FastTreeTweedieModelParameters
|
Model parameters for FastTreeTweedieTrainer.
|
FastTreeTweedieTrainer
|
The IEstimator<TTransformer> for training a decision tree regression model using Tweedie loss function.
This trainer is a generalization of Poisson, compound Poisson, and gamma regression.
|
FastTreeTweedieTrainer.Options
|
Options for the FastTreeTweedieTrainer as used in
FastTreeTweedie(Options).
|
GamBinaryModelParameters
|
Model parameters for GamBinaryTrainer.
|
GamBinaryTrainer
|
The IEstimator<TTransformer> for training a binary classification model with generalized additive models (GAM).
|
GamBinaryTrainer.Options
|
Options for the GamBinaryTrainer as used in
Gam(Options).
|
GamModelParametersBase
|
The base class for GAM Model Parameters.
|
GamRegressionModelParameters
|
Model parameters for GamRegressionTrainer.
|
GamRegressionTrainer
|
The IEstimator<TTransformer> for training a regression model with generalized additive models (GAM).
|
GamRegressionTrainer.Options
|
Options for the GamRegressionTrainer as used in
Gam(Options).
|
GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase
|
Base class for GAM-based trainer options.
|
GamTrainerBase<TOptions,TTransformer,TPredictor>
|
Base class for GAM trainers.
|
GeneralityLossRule
|
Loss of Generality (GL).
|
GeneralityToProgressRatioRule
|
Generality to Progress Ratio (PQ).
|
LowProgressRule
|
Low Progress (LP).
This rule fires when the improvements on the score stall.
|
MovingWindowRule
|
PretrainedTreeFeaturizationEstimator
|
A IEstimator<TTransformer> which contains a pre-trained TreeEnsembleModelParameters and calling its
Fit(IDataView) produces a featurizer based on the pre-trained model.
|
PretrainedTreeFeaturizationEstimator.Options
|
PretrainedTreeFeaturizationEstimator.Options of PretrainedTreeFeaturizationEstimator as
used when calling FeaturizeByPretrainTreeEnsemble(TransformsCatalog, PretrainedTreeFeaturizationEstimator+Options).
|
QuantileRegressionTree
|
A container class for exposing Microsoft.ML.Trainers.FastTree.InternalQuantileRegressionTree's attributes to users.
This class should not be mutable, so it contains a lot of read-only members. In addition to
things inherited from RegressionTreeBase, we add GetLeafSamplesAt(Int32)
and GetLeafSampleWeightsAt(Int32) to expose (sub-sampled) training labels falling into
the leafIndex-th leaf and their weights.
|
QuantileRegressionTreeEnsemble
|
RandomForestTrainerBase<TOptions,TTransformer,TModel>
|
RegressionTree
|
A container class for exposing Microsoft.ML.Trainers.FastTree.InternalRegressionTree's attributes to users.
This class should not be mutable, so it contains a lot of read-only members. Note that
RegressionTree is identical to RegressionTreeBase but in
another derived class QuantileRegressionTree some attributes are added.
|
RegressionTreeBase
|
A container base class for exposing Microsoft.ML.Trainers.FastTree.InternalRegressionTree's and
Microsoft.ML.Trainers.FastTree.InternalQuantileRegressionTree's attributes to users.
This class should not be mutable, so it contains a lot of read-only members.
|
RegressionTreeEnsemble
|
TolerantEarlyStoppingRule
|
TreeEnsemble<T>
|
A list of RegressionTreeBase's derived class. To compute the output value of a
TreeEnsemble<T>, we need to compute the output values of all trees in Trees,
scale those values via TreeWeights, and finally sum the scaled values and Bias up.
|
TreeEnsembleFeaturizationEstimatorBase
|
This class encapsulates the common behavior of all tree-based featurizers such as FastTreeBinaryFeaturizationEstimator,
FastForestBinaryFeaturizationEstimator, FastTreeRegressionFeaturizationEstimator,
FastForestRegressionFeaturizationEstimator, and PretrainedTreeFeaturizationEstimator.
All tree-based featurizers share the same output schema computed by GetOutputSchema(SchemaShape). All tree-based featurizers
requires an input feature column name and a suffix for all output columns. The ITransformer returned by Fit(IDataView)
produces three columns: (1) the prediction values of all trees, (2) the IDs of leaves the input feature vector falling into, and (3)
the binary vector which encodes the paths to those destination leaves.
|
TreeEnsembleFeaturizationEstimatorBase.OptionsBase
|
The common options of tree-based featurizations such as FastTreeBinaryFeaturizationEstimator, FastForestBinaryFeaturizationEstimator,
FastTreeRegressionFeaturizationEstimator, FastForestRegressionFeaturizationEstimator, and PretrainedTreeFeaturizationEstimator.
|
TreeEnsembleFeaturizationTransformer
|
ITransformer resulting from fitting any derived class of TreeEnsembleFeaturizationEstimatorBase.
The derived classes include, for example, FastTreeBinaryFeaturizationEstimator and
FastForestRegressionFeaturizationEstimator.
|
TreeEnsembleModelParameters
|
TreeEnsembleModelParametersBasedOnQuantileRegressionTree
|
TreeEnsembleModelParametersBasedOnQuantileRegressionTree is derived from
TreeEnsembleModelParameters plus a strongly-typed public attribute,
TrainedTreeEnsemble, for exposing trained model's details to users.
Its function, Microsoft.ML.Trainers.FastTree.TreeEnsembleModelParametersBasedOnQuantileRegressionTree.CreateTreeEnsembleFromInternalDataStructure, is
called to create TrainedTreeEnsemble inside TreeEnsembleModelParameters.
Note that the major difference between TreeEnsembleModelParametersBasedOnQuantileRegressionTree
and TreeEnsembleModelParametersBasedOnRegressionTree is the type of
TrainedTreeEnsemble.
|
TreeEnsembleModelParametersBasedOnRegressionTree
|
TreeEnsembleModelParametersBasedOnRegressionTree is derived from
TreeEnsembleModelParameters plus a strongly-typed public attribute,
TrainedTreeEnsemble, for exposing trained model's details to users.
Its function, Microsoft.ML.Trainers.FastTree.TreeEnsembleModelParametersBasedOnRegressionTree.CreateTreeEnsembleFromInternalDataStructure, is
called to create TrainedTreeEnsemble inside TreeEnsembleModelParameters.
Note that the major difference between TreeEnsembleModelParametersBasedOnQuantileRegressionTree
and TreeEnsembleModelParametersBasedOnRegressionTree is the type of
TrainedTreeEnsemble.
|
TreeOptions
|
Options for tree trainers.
|