SdcaBinaryTrainerBase<TModelParameters> Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
SDCA is a general training algorithm for (generalized) linear models such as support vector machine, linear regression, logistic regression,
and so on. SDCA binary classification trainer family includes several sealed members:
(1) SdcaNonCalibratedBinaryTrainer supports general loss functions and returns LinearBinaryModelParameters.
(2) SdcaLogisticRegressionBinaryTrainer essentially trains a regularized logistic regression model. Because logistic regression
naturally provide probability output, this generated model's type is CalibratedModelParametersBase<TSubModel,TCalibrator>.
where TSubModel
is LinearBinaryModelParameters and TCalibrator
is PlattCalibrator.
public abstract class SdcaBinaryTrainerBase<TModelParameters> : Microsoft.ML.Trainers.SdcaTrainerBase<Microsoft.ML.Trainers.SdcaBinaryTrainerBase<TModelParameters>.BinaryOptionsBase,Microsoft.ML.Data.BinaryPredictionTransformer<TModelParameters>,TModelParameters> where TModelParameters : class
type SdcaBinaryTrainerBase<'ModelParameters (requires 'ModelParameters : null)> = class
inherit SdcaTrainerBase<SdcaBinaryTrainerBase<'ModelParameters>.BinaryOptionsBase, BinaryPredictionTransformer<'ModelParameters>, 'ModelParameters (requires 'ModelParameters : null)>
Public MustInherit Class SdcaBinaryTrainerBase(Of TModelParameters)
Inherits SdcaTrainerBase(Of SdcaBinaryTrainerBase(Of TModelParameters).BinaryOptionsBase, BinaryPredictionTransformer(Of TModelParameters), TModelParameters)
Type Parameters
- TModelParameters
- Inheritance
-
SdcaTrainerBase<SdcaBinaryTrainerBase<TModelParameters>.BinaryOptionsBase,BinaryPredictionTransformer<TModelParameters>,TModelParameters>SdcaBinaryTrainerBase<TModelParameters>
- Derived
Fields
FeatureColumn |
The feature column that the trainer expects. (Inherited from TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
The label column that the trainer expects. Can be |
WeightColumn |
The weight column that the trainer expects. Can be |
Properties
Info |
Methods
Fit(IDataView) |
Trains and returns a ITransformer. (Inherited from TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) | (Inherited from TrainerEstimatorBase<TTransformer,TModel>) |
Extension Methods
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Append a 'caching checkpoint' to the estimator chain. This will ensure that the downstream estimators will be trained against cached data. It is helpful to have a caching checkpoint before trainers that take multiple data passes. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Given an estimator, return a wrapping object that will call a delegate once Fit(IDataView) is called. It is often important for an estimator to return information about what was fit, which is why the Fit(IDataView) method returns a specifically typed object, rather than just a general ITransformer. However, at the same time, IEstimator<TTransformer> are often formed into pipelines with many objects, so we may need to build a chain of estimators via EstimatorChain<TLastTransformer> where the estimator for which we want to get the transformer is buried somewhere in this chain. For that scenario, we can through this method attach a delegate that will be called once fit is called. |