PermutationFeatureImportanceExtensions.PermutationFeatureImportance 方法

定义

重载

PermutationFeatureImportance(MulticlassClassificationCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

多类Classification 的 PFI) (排列特征重要性。

PermutationFeatureImportance(RegressionCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

回归的 PFI) (排列特征重要性。

PermutationFeatureImportance(RankingCatalog, ITransformer, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

排列特征重要性 (PFI) 排名。

PermutationFeatureImportance<TModel>(BinaryClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

二元分类的 PFI) (排列特征重要性。

PermutationFeatureImportance<TModel>(MulticlassClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

多类Classification 的 PFI) (排列特征重要性。

PermutationFeatureImportance<TModel>(RegressionCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

回归的 PFI) (排列特征重要性。

PermutationFeatureImportance<TModel>(RankingCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

排列特征重要性 (PFI) 排名。

PermutationFeatureImportance(MulticlassClassificationCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

多类Classification 的 PFI) (排列特征重要性。

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.MulticlassClassificationCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.MulticlassClassificationCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.MulticlassClassificationMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As MulticlassClassificationCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, MulticlassClassificationMetricsStatistics)

参数

catalog
MulticlassClassificationCatalog

多类分类目录。

model
ITransformer

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名。 列数据必须是 KeyDataViewType

useFeatureWeightFilter
Boolean

使用特征权重来预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要计算的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

字典将每个特征映射到其每特征“贡献”到分数。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.MulticlassClassification.Trainers
                .SdcaMaximumEntropy());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.MulticlassClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on
            // microaccuracy.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.MicroAccuracy })
                .OrderByDescending(feature => Math.Abs(feature.MicroAccuracy.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in MicroAccuracy\t95% Confidence in "
                + "the Mean Change in MicroAccuracy");

            var microAccuracy = permutationMetrics.Select(x => x.MicroAccuracy)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    microAccuracy[i].Mean,
                    1.96 * microAccuracy[i].StandardError);
            }

            // Expected output:
            //Feature     Change in MicroAccuracy  95% Confidence in the Mean Change in MicroAccuracy
            //Feature2     -0.1395                 0.0006567
            //Feature1     -0.05367                0.0006908
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the
        /// label.</param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)
                    (bias + weight1 * data.Feature1 + weight2 * data.Feature2 +
                    rng.NextDouble() - 0.5);

                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

注解

排列特征重要性 (PFI) 是确定训练机器学习模型中特征的全球重要性的技术。 PFI是一种简单而强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是获取带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,使每个示例现在都有特征的随机值和所有其他特征的原始值。 评估指标 (例如,然后计算此修改数据集的微准确性) ,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有功能执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的多类分类评估指标的变化,并返回一个ImmutableArrayMulticlassClassificationMetrics对象。 有关使用这些结果以分析模型的特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance(RegressionCatalog, ITransformer, IDataView, String, Boolean, Nullable<Int32>, Int32)

回归的 PFI) (排列特征重要性。

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.RegressionMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.RegressionCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.RegressionCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.RegressionMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As RegressionCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, RegressionMetricsStatistics)

参数

catalog
RegressionCatalog

回归目录。

model
ITransformer

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名。 列数据必须是 Single

useFeatureWeightFilter
Boolean

使用特征权重来预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要计算的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

字典将每个特征映射到其每特征“贡献”到分数。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1),
                nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms.Concatenate(
                "Features",
                featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.Regression.Trainers.Ols());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Regression
                .PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on RMSE.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new
                {
                    index,
                    metrics.RootMeanSquaredError
                })

                .OrderByDescending(feature => Math.Abs(
                    feature.RootMeanSquaredError.Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in RMSE\t95%" +
                "Confidence in the Mean Change in RMSE");

            var rmse = permutationMetrics.Select(x => x.RootMeanSquaredError)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.Weights[i],
                    rmse[i].Mean,
                    1.96 * rmse[i].StandardError);
            }

            // Expected output:
            //  Feature    Model Weight Change in RMSE  95% Confidence in the Mean Change in RMSE
            //  Feature2        9.00        4.009       0.008304
            //  Feature1        4.48        1.901       0.003351
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                data.Label = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                yield return data;
            }
        }
    }
}

注解

排列特征重要性 (PFI) 是确定训练机器学习模型中特征的全球重要性的技术。 PFI是一种简单而强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是获取带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,使每个示例现在都有特征的随机值和所有其他特征的原始值。 计算指标 (例如 R 平方) ,然后计算此修改后的数据集,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有功能执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的回归评估指标的变化,并返回一个ImmutableArrayRegressionMetrics对象。 有关使用这些结果以分析模型的特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance(RankingCatalog, ITransformer, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

排列特征重要性 (PFI) 排名。

public static System.Collections.Immutable.ImmutableDictionary<string,Microsoft.ML.Data.RankingMetricsStatistics> PermutationFeatureImportance (this Microsoft.ML.RankingCatalog catalog, Microsoft.ML.ITransformer model, Microsoft.ML.IDataView data, string labelColumnName = "Label", string rowGroupColumnName = "GroupId", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1);
static member PermutationFeatureImportance : Microsoft.ML.RankingCatalog * Microsoft.ML.ITransformer * Microsoft.ML.IDataView * string * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableDictionary<string, Microsoft.ML.Data.RankingMetricsStatistics>
<Extension()>
Public Function PermutationFeatureImportance (catalog As RankingCatalog, model As ITransformer, data As IDataView, Optional labelColumnName As String = "Label", Optional rowGroupColumnName As String = "GroupId", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableDictionary(Of String, RankingMetricsStatistics)

参数

catalog
RankingCatalog

排名目录。

model
ITransformer

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名。 列数据必须是 SingleKeyDataViewType

rowGroupColumnName
String

GroupId 列名称

useFeatureWeightFilter
Boolean

使用特征权重来预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要计算的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

字典将每个特征映射到其每特征“贡献”到分数。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1), nameof(
                Data.Feature2) };
            var pipeline = mlContext.Transforms.Concatenate("Features",
                featureColumns)
                    .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                    .Append(mlContext.Transforms.Conversion.MapValueToKey(
                        "GroupId"))
                    .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                    .Append(mlContext.Ranking.Trainers.FastTree());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Ranking.PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on NDCG@1.
            var sortedIndices = permutationMetrics.Select((metrics, index) => new
            {
                index,
                metrics.NormalizedDiscountedCumulativeGains
            })
                .OrderByDescending(feature => Math.Abs(
                    feature.NormalizedDiscountedCumulativeGains[0].Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in NDCG@1\t95% Confidence in the" +
                "Mean Change in NDCG@1");
            var ndcg = permutationMetrics.Select(
                x => x.NormalizedDiscountedCumulativeGains).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    ndcg[i][0].Mean,
                    1.96 * ndcg[i][0].StandardError);
            }

            // Expected output:
            //  Feature     Change in NDCG@1    95% Confidence in the Mean Change in NDCG@1
            //  Feature2     -0.2421            0.001748
            //  Feature1     -0.0513            0.001184
        }

        private class Data
        {
            public float Label { get; set; }

            public int GroupId { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// 
        /// <param name="nExamples">The number of examples.</param>
        /// 
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// 
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// 
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// 
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// 
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1,
                int groupSize = 5)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    GroupId = i / groupSize,
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

注解

排列特征重要性 (PFI) 是确定训练机器学习模型中特征的全球重要性的技术。 PFI是一种简单而强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是获取带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,使每个示例现在都有特征的随机值和所有其他特征的原始值。 计算指标 (例如 NDCG) ,然后计算此修改后的数据集,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有功能执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个功能的所有可能的排名评估指标的变化,并返回一个ImmutableArrayRankingMetrics对象。 有关使用这些结果以分析模型的特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance<TModel>(BinaryClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

二元分类的 PFI) (排列特征重要性。

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.BinaryClassificationMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.BinaryClassificationCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.BinaryClassificationCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.BinaryClassificationMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As BinaryClassificationCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of BinaryClassificationMetricsStatistics)

类型参数

TModel

参数

catalog
BinaryClassificationCatalog

二元分类目录。

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名。 列数据必须是 Boolean

useFeatureWeightFilter
Boolean

使用特征权重来预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要计算的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

按特征“贡献”到分数的数组。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };
            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.BinaryClassification.Trainers
                .SdcaLogisticRegression());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.BinaryClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on AUC.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.AreaUnderRocCurve })
                .OrderByDescending(
                feature => Math.Abs(feature.AreaUnderRocCurve.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in AUC"
                + "\t95% Confidence in the Mean Change in AUC");
            var auc = permutationMetrics.Select(x => x.AreaUnderRocCurve).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.SubModel.Weights[i],
                    auc[i].Mean,
                    1.96 * auc[i].StandardError);
            }

            // Expected output:
            //  Feature     Model Weight Change in AUC  95% Confidence in the Mean Change in AUC
            //  Feature2        35.15     -0.387        0.002015
            //  Feature1        17.94     -0.1514       0.0008963
        }

        private class Data
        {
            public bool Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);

                data.Label = Sigmoid(value) > 0.5;
                yield return data;
            }
        }

        private static double Sigmoid(double x) => 1.0 / (1.0 + Math.Exp(-1 * x));
    }
}

注解

排列特征重要性 (PFI) 是确定训练机器学习模型中特征的全球重要性的技术。 PFI是一种简单而强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是获取带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,使每个示例现在都有特征的随机值和所有其他特征的原始值。 评估指标 (例如,然后为此修改的数据集计算 AUC) ,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有功能执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的二元分类评估指标的变化,并返回一个ImmutableArrayBinaryClassificationMetrics对象。 有关使用这些结果以分析模型的特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance<TModel>(MulticlassClassificationCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

多类分类的 PFI) (排列特征重要性。

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.MulticlassClassificationCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.MulticlassClassificationCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.MulticlassClassificationMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As MulticlassClassificationCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of MulticlassClassificationMetricsStatistics)

类型参数

TModel

参数

catalog
MulticlassClassificationCatalog

多类分类目录。

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名。 列数据必须是 KeyDataViewType

useFeatureWeightFilter
Boolean

使用特征权重来预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要计算的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

分数的每功能“贡献数”数组。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.MulticlassClassification.Trainers
                .SdcaMaximumEntropy());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.MulticlassClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on
            // microaccuracy.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.MicroAccuracy })
                .OrderByDescending(feature => Math.Abs(feature.MicroAccuracy.Mean))
                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in MicroAccuracy\t95% Confidence in "
                + "the Mean Change in MicroAccuracy");

            var microAccuracy = permutationMetrics.Select(x => x.MicroAccuracy)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    microAccuracy[i].Mean,
                    1.96 * microAccuracy[i].StandardError);
            }

            // Expected output:
            //Feature     Change in MicroAccuracy  95% Confidence in the Mean Change in MicroAccuracy
            //Feature2     -0.1395                 0.0006567
            //Feature1     -0.05367                0.0006908
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the
        /// label.</param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)
                    (bias + weight1 * data.Feature1 + weight2 * data.Feature2 +
                    rng.NextDouble() - 0.5);

                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

注解

PFI) (排列特征重要性是确定定型机器学习模型中特征的全球重要性的技术。 PFI 是一种简单但强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是采用带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,以便每个示例现在都有特征的随机值和所有其他特征的原始值。 评估指标 (,例如,计算此修改数据集的微准确度) ,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有特征执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的多类分类评估指标的变化,并返回一个ImmutableArrayMulticlassClassificationMetrics对象。 有关使用这些结果分析模型特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance<TModel>(RegressionCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, Boolean, Nullable<Int32>, Int32)

回归的 PFI) (排列特征重要性。

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RegressionMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.RegressionCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.RegressionCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RegressionMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As RegressionCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of RegressionMetricsStatistics)

类型参数

TModel

参数

catalog
RegressionCatalog

回归目录。

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名称。 列数据必须是 Single

useFeatureWeightFilter
Boolean

使用特征权重预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要评估的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

分数的每功能“贡献数”数组。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1),
                nameof(Data.Feature2) };

            var pipeline = mlContext.Transforms.Concatenate(
                "Features",
                featureColumns)
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.Regression.Trainers.Ols());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Regression
                .PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on RMSE.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new
                {
                    index,
                    metrics.RootMeanSquaredError
                })

                .OrderByDescending(feature => Math.Abs(
                    feature.RootMeanSquaredError.Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tModel Weight\tChange in RMSE\t95%" +
                "Confidence in the Mean Change in RMSE");

            var rmse = permutationMetrics.Select(x => x.RootMeanSquaredError)
                .ToArray();

            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:0.00}\t{2:G4}\t{3:G4}",
                    featureColumns[i],
                    linearPredictor.Model.Weights[i],
                    rmse[i].Mean,
                    1.96 * rmse[i].StandardError);
            }

            // Expected output:
            //  Feature    Model Weight Change in RMSE  95% Confidence in the Mean Change in RMSE
            //  Feature2        9.00        4.009       0.008304
            //  Feature1        4.48        1.901       0.003351
        }

        private class Data
        {
            public float Label { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                data.Label = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                yield return data;
            }
        }
    }
}

注解

PFI) (排列特征重要性是确定定型机器学习模型中特征的全球重要性的技术。 PFI 是一种简单但强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是采用带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,以便每个示例现在都有特征的随机值和所有其他特征的原始值。 计算指标 (,例如 R 平方) ,然后计算此修改后的数据集,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有特征执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的回归评估指标的变化,并返回一个ImmutableArrayRegressionMetrics对象。 有关使用这些结果分析模型特征重要性的示例,请参阅以下示例。

适用于

PermutationFeatureImportance<TModel>(RankingCatalog, ISingleFeaturePredictionTransformer<TModel>, IDataView, String, String, Boolean, Nullable<Int32>, Int32)

排列特征重要性 (PFI) 排名。

public static System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RankingMetricsStatistics> PermutationFeatureImportance<TModel> (this Microsoft.ML.RankingCatalog catalog, Microsoft.ML.ISingleFeaturePredictionTransformer<TModel> predictionTransformer, Microsoft.ML.IDataView data, string labelColumnName = "Label", string rowGroupColumnName = "GroupId", bool useFeatureWeightFilter = false, int? numberOfExamplesToUse = default, int permutationCount = 1) where TModel : class;
static member PermutationFeatureImportance : Microsoft.ML.RankingCatalog * Microsoft.ML.ISingleFeaturePredictionTransformer<'Model (requires 'Model : null)> * Microsoft.ML.IDataView * string * string * bool * Nullable<int> * int -> System.Collections.Immutable.ImmutableArray<Microsoft.ML.Data.RankingMetricsStatistics> (requires 'Model : null)
<Extension()>
Public Function PermutationFeatureImportance(Of TModel As Class) (catalog As RankingCatalog, predictionTransformer As ISingleFeaturePredictionTransformer(Of TModel), data As IDataView, Optional labelColumnName As String = "Label", Optional rowGroupColumnName As String = "GroupId", Optional useFeatureWeightFilter As Boolean = false, Optional numberOfExamplesToUse As Nullable(Of Integer) = Nothing, Optional permutationCount As Integer = 1) As ImmutableArray(Of RankingMetricsStatistics)

类型参数

TModel

参数

catalog
RankingCatalog

排名目录。

predictionTransformer
ISingleFeaturePredictionTransformer<TModel>

要对其评估特征重要性的模型。

data
IDataView

评估数据集。

labelColumnName
String

标签列名称。 列数据必须为 SingleKeyDataViewType

rowGroupColumnName
String

GroupId 列名称

useFeatureWeightFilter
Boolean

使用特征权重预筛选功能。

numberOfExamplesToUse
Nullable<Int32>

限制要评估的示例数。 表示将使用最多 2 个 bln 示例。

permutationCount
Int32

要执行的排列数。

返回

分数的每功能“贡献数”数组。

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class PermutationFeatureImportance
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Create sample data.
            var samples = GenerateData();

            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns = new string[] { nameof(Data.Feature1), nameof(
                Data.Feature2) };
            var pipeline = mlContext.Transforms.Concatenate("Features",
                featureColumns)
                    .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                    .Append(mlContext.Transforms.Conversion.MapValueToKey(
                        "GroupId"))
                    .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                    .Append(mlContext.Ranking.Trainers.FastTree());

            // Fit the pipeline to the data.
            var model = pipeline.Fit(data);

            // Transform the dataset.
            var transformedData = model.Transform(data);

            // Extract the predictor.
            var linearPredictor = model.LastTransformer;

            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.Ranking.PermutationFeatureImportance(
                linearPredictor, transformedData, permutationCount: 30);

            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on NDCG@1.
            var sortedIndices = permutationMetrics.Select((metrics, index) => new
            {
                index,
                metrics.NormalizedDiscountedCumulativeGains
            })
                .OrderByDescending(feature => Math.Abs(
                    feature.NormalizedDiscountedCumulativeGains[0].Mean))

                .Select(feature => feature.index);

            Console.WriteLine("Feature\tChange in NDCG@1\t95% Confidence in the" +
                "Mean Change in NDCG@1");
            var ndcg = permutationMetrics.Select(
                x => x.NormalizedDiscountedCumulativeGains).ToArray();
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    ndcg[i][0].Mean,
                    1.96 * ndcg[i][0].StandardError);
            }

            // Expected output:
            //  Feature     Change in NDCG@1    95% Confidence in the Mean Change in NDCG@1
            //  Feature2     -0.2421            0.001748
            //  Feature1     -0.0513            0.001184
        }

        private class Data
        {
            public float Label { get; set; }

            public int GroupId { get; set; }

            public float Feature1 { get; set; }

            public float Feature2 { get; set; }
        }

        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// 
        /// <param name="nExamples">The number of examples.</param>
        /// 
        /// <param name="bias">The bias, or offset, in the calculation of the label.
        /// </param>
        /// 
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// 
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// 
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// 
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1,
                int groupSize = 5)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    GroupId = i / groupSize,
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };

                // Create a noisy label.
                var value = (float)(bias + weight1 * data.Feature1 + weight2 *
                    data.Feature2 + rng.NextDouble() - 0.5);
                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}

注解

PFI) (排列特征重要性是确定定型机器学习模型中特征的全球重要性的技术。 PFI 是一种简单但强大的技术,由布雷曼在他的随机森林论文,第10节 (布雷曼。 “随机林”。 机器学习,2001.) PFI 方法的优点是,它是与模型无关的-它适用于任何可评估的模型-它可以使用任何数据集,而不仅仅是训练集来计算特征重要性指标。

PFI 的工作原理是采用带标签的数据集、选择特征,并跨所有示例对该功能的值进行渗透,以便每个示例现在都有特征的随机值和所有其他特征的原始值。 计算指标 (,例如,计算此修改数据集的 NDCG) ,计算原始数据集中的评估指标的变化。 评估指标的变化越大,特征对模型就越重要。 PFI 的工作原理是跨模型的所有特征执行此排列分析,一个接一个地执行。

在此实现中,PFI 计算每个特征的所有可能的排名评估指标的变化,并返回一个ImmutableArrayRankingMetrics对象。 有关使用这些结果分析模型特征重要性的示例,请参阅以下示例。

适用于