共用方式為


臉部辨識

本文會說明臉部辨識的概念、相關作業,以及基礎資料結構。 廣義而言,臉部辨識是透過臉部來驗證或識別個人的流程。 臉部辨識對實作身分識別驗證案例極為重要,因為企業和應用程式可以使用此技術來驗證 (遠端) 使用者是否為其宣稱的身分。

臉部辨識作業

警告

臉部辨識服務存取受限於資格和使用準則,以支援我們的「負責任的 AI 原則」。 臉部辨識服務僅供 Microsoft 受管理的客戶和合作夥伴使用。 請使用臉部辨識受理表單以申請存取。 如需詳細資訊,請參閱臉部的有限存取權頁面

建立與訓練 PersonGroup

您必須建立 PersonGroupLargePersonGroup 來儲存以供比對的一組人員。 PersonGroups 包含 Person 物件,每個物件都代表一名個人,並包含一組屬於該人員的臉部資料。

訓練作業會準備要用於臉部資料比較的資料集。

識別

識別作業會採用一或多個來源臉部識別碼 (出自 DetectedFace 或 PersistedFace 物件) 和 PersonGroup 或 LargePersonGroup。 其會傳回每個來源臉部可能隸屬之 Person 物件清單。 傳回的 Person 物件會包裝為具有預測信賴值的 Candidate 物件。

驗證

驗證作業會採用單一臉部識別碼 (出自 DetectedFace 或 PersistedFace 物件) 和 Person 物件。 其會判斷該臉部是否屬於同一個人。 驗證是一對一的比對,可以作為識別 API 呼叫結果的最後檢查。 不過,您可以選擇是否傳入可能 Person 所屬的 PersonGroup,以改善 API 效能。

辨識作業主要使用下列資料結構。 這些物件會儲存在雲端,供其識別碼字串參考。 識別碼字串在訂閱中一律是唯一的,但名稱欄位則可能會重複。

請參閱臉部辨識資料結構指南。

輸入需求

使用下列祕訣,確定您的輸入影像能夠提供最精確的辨識結果:

  • 支援的輸入影像格式包括 JPEG、PNG、GIF (第一個畫面格)、BMP。
  • 影像檔案大小應大於 6 MB。
  • 某些臉部可能因為相片構圖而無法辨識,例如:
    • 過亮的影像,例如嚴重背光。
    • 有遮蔽物擋住一或兩隻眼睛。
    • 髮型或鬍子的差異。
    • 年齡所造成的臉部外觀變化。
    • 極端臉部表情。
  • 當使用適用的偵測模型作為影像是否可能有足夠的質量嘗試臉部辨識的一般指導方針時,您可以在qualityForRecognition臉部偵測作業中使用 屬性。 人員註冊建議只使用 "high" 品質影像,識別案例則建議至少使用 "medium" 品質影像。

下一步

熟悉臉部辨識概念後,請撰寫利用訓練後 PersonGroup 識別臉部的指令碼。