從 Spark 刪除 Azure Cosmos DB for Apache Cassandra 資料表中的資料
適用於: Cassandra
本文描述如何從 Spark 刪除 Azure Cosmos DB for Apache Cassandra 資料表中的資料。
在您的 Notebook 叢集中設定下列 Spark 設定。 這是一次性的活動。
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
注意
如果您使用 Spark 3.x,則無須安裝 Azure Cosmos DB 協助程式和連線中心。 您也應使用 remoteConnectionsPerExecutor
,而不是 connections_per_executor_max
Spark 3 連接器 (如上述)。
警告
本文所示的 Spark 3 範例已使用 Spark 3.2.1 版和對應的 Cassandra Spark 連接器 com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0 進行測試。 較新版本的 Spark 和/或 Cassandra 連接器可能無法如預期般運作。
我們將使用此程式碼片段來產生範例資料:
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
//Create dataframe
val booksDF = Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887,11.33),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890,22.45),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892,19.83),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893,14.22),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901,12.25)
).toDF("book_id", "book_author", "book_name", "book_pub_year","book_price")
//Persist
booksDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks", "output.consistency.level" -> "ALL", "ttl" -> "10000000"))
.save()
//1) Create dataframe
val deleteBooksDF = spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.filter("book_id = 'b01001'")
//2) Review execution plan
deleteBooksDF.explain
//3) Review table data before execution
println("==================")
println("1) Before")
deleteBooksDF.show
println("==================")
//4) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksDF.foreachPartition((partition: Iterator[Row]) => {
cdbConnector.withSessionDo(session =>
partition.foreach{ book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+book.getString(0) +"';"
session.execute(delete)
})
})
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.show
輸出:
== Physical Plan ==
*(1) Filter (isnotnull(book_pub_year#486) && (book_pub_year#486 = 1887))
+- *(1) Scan org.apache.spark.sql.cassandra.CassandraSourceRelation@197cfae4 [book_id#482,book_author#483,book_name#484,book_price#485,book_pub_year#486]
PushedFilters: [IsNotNull(book_pub_year), EqualTo(book_pub_year,1887)],
ReadSchema: struct<book_id:string,book_author:string,book_name:string,book_price:float,book_pub_year:int>
==================
1) Before
+-------+------------------+------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+------------------+----------+-------------+
| b00001|Arthur Conan Doyle|A study in scarlet| 11.33| 1887|
+-------+------------------+------------------+----------+-------------+
==================
==================
2a) Starting delete
2b) Completed delete
==================
3) After
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b03999|Arthur Conan Doyle|The adventure of ...| null| 1892|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
| b02999|Arthur Conan Doyle| A case of identity| 15.0| 1891|
+-------+------------------+--------------------+----------+-------------+
deleteBooksDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [book_id: string, book_author: string ... 3 more fields]
cdbConnector: com.datastax.spark.connector.cql.CassandraConnector = com.datastax.spark.connector.cql.CassandraConnector@187deb43
//1) Create dataframe
val deleteBooksDF = spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//2) Review execution plan
deleteBooksDF.explain
//3) Review table data before execution
println("==================")
println("1) Before")
deleteBooksDF.show
println("==================")
//4) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksDF.foreachPartition((partition: Iterator[Row]) => {
cdbConnector.withSessionDo(session =>
partition.foreach{ book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+book.getString(0) +"';"
session.execute(delete)
})
})
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.show
輸出:
== Physical Plan ==
*(1) Scan org.apache.spark.sql.cassandra.CassandraSourceRelation@495377d7 [book_id#565,book_author#566,book_name#567,book_price#568,book_pub_year#569]
PushedFilters: [],
ReadSchema: struct<book_id:string,book_author:string,book_name:string,book_price:float,book_pub_year:int>
==================
1) Before
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b03999|Arthur Conan Doyle|The adventure of ...| null| 1892|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
| b02999|Arthur Conan Doyle| A case of identity| 15.0| 1891|
+-------+------------------+--------------------+----------+-------------+
==================
==================
2a) Starting delete
2b) Completed delete
==================
3) After
+-------+-----------+---------+----------+-------------+
|book_id|book_author|book_name|book_price|book_pub_year|
+-------+-----------+---------+----------+-------------+
+-------+-----------+---------+----------+-------------+
//1) Create RDD with all rows
val deleteBooksRDD =
sc.cassandraTable("books_ks", "books")
//2) Review table data before execution
println("==================")
println("1) Before")
deleteBooksRDD.collect.foreach(println)
println("==================")
//3) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
/* Option 1:
// Not supported currently
sc.cassandraTable("books_ks", "books")
.where("book_pub_year = 1891")
.deleteFromCassandra("books_ks", "books")
*/
//Option 2: CassandraConnector and CQL
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksRDD.foreachPartition(partition => {
cdbConnector.withSessionDo(session =>
partition.foreach{book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+ book.getString(0) +"';"
session.execute(delete)
}
)
})
println("Completed delete")
println("==================")
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
sc.cassandraTable("books_ks", "books").collect.foreach(println)
輸出:
==================
1) Before
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: 12.25, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: 11.33, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: 22.45, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: 14.22, book_pub_year: 1893}
CassandraRow{book_id: b01001, book_author: Arthur Conan Doyle, book_name: The adventures of Sherlock Holmes, book_price: 19.83, book_pub_year: 1892}
==================
==================
2a) Starting delete
Completed delete
==================
2b) Completed delete
==================
3) After
deleteBooksRDD: com.datastax.spark.connector.rdd.CassandraTableScanRDD[com.datastax.spark.connector.CassandraRow] = CassandraTableScanRDD[126] at RDD at CassandraRDD.scala:19
cdbConnector: com.datastax.spark.connector.cql.CassandraConnector = com.datastax.spark.connector.cql.CassandraConnector@317927
//1) Create RDD
val deleteBooksRDD =
sc.cassandraTable("books_ks", "books")
//2) Review table data before execution
println("==================")
println("1) Before")
deleteBooksRDD.collect.foreach(println)
println("==================")
//3) Delete specific column values
println("==================")
println("2a) Starting delete of book price")
sc.cassandraTable("books_ks", "books")
.deleteFromCassandra("books_ks", "books",SomeColumns("book_price"))
println("Completed delete")
println("==================")
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
sc.cassandraTable("books_ks", "books").take(4).foreach(println)
輸出:
==================
1) Before
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: 20.0, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: 23.0, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: 11.0, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: 5.0, book_pub_year: 1893}
CassandraRow{book_id: b01001, book_author: Arthur Conan Doyle, book_name: The adventures of Sherlock Holmes, book_price: 10.0, book_pub_year: 1892}
==================
==================
2a) Starting delete of book price
Completed delete
==================
2b) Completed delete
==================
3) After
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: null, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: null, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: null, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: null, book_pub_year: 1893}
deleteBooksRDD: com.datastax.spark.connector.rdd.CassandraTableScanRDD[com.datastax.spark.connector.CassandraRow] = CassandraTableScanRDD[145] at RDD at CassandraRDD.scala:19
若要執行彙總及資料複製作業,請參閱 -