SafeHandle 類別
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
表示操作系統句柄的包裝函式類別。 這個類別必須繼承。
public ref class SafeHandle abstract : IDisposable
public ref class SafeHandle abstract : System::Runtime::ConstrainedExecution::CriticalFinalizerObject, IDisposable
[System.Security.SecurityCritical]
public abstract class SafeHandle : IDisposable
public abstract class SafeHandle : System.Runtime.ConstrainedExecution.CriticalFinalizerObject, IDisposable
[System.Security.SecurityCritical]
public abstract class SafeHandle : System.Runtime.ConstrainedExecution.CriticalFinalizerObject, IDisposable
[<System.Security.SecurityCritical>]
type SafeHandle = class
interface IDisposable
type SafeHandle = class
inherit CriticalFinalizerObject
interface IDisposable
[<System.Security.SecurityCritical>]
type SafeHandle = class
inherit CriticalFinalizerObject
interface IDisposable
Public MustInherit Class SafeHandle
Implements IDisposable
Public MustInherit Class SafeHandle
Inherits CriticalFinalizerObject
Implements IDisposable
- 繼承
-
SafeHandle
- 繼承
- 衍生
- 屬性
- 實作
範例
下列程式代碼範例會建立操作系統檔句柄的自定義安全句柄,衍生自 SafeHandleZeroOrMinusOneIsInvalid。 它會從檔案讀取位元組,並顯示其十六進位值。 它也包含導致線程中止但句柄值釋出的錯誤測試控管。 使用 IntPtr 來表示句柄時,句柄偶爾會因為異步線程中止而外洩。
您將需要與已編譯應用程式位於相同資料夾中的文字檔。 假設您將應用程式命名為 「HexViewer」,命令行使用方式為:
HexViewer <filename> -Fault
選擇性地指定 -Fault
,以刻意嘗試在某個視窗中中止線程來洩漏句柄。 使用 Windows Perfmon.exe 工具來監視插入錯誤時處理計數。
using System;
using System.Runtime.InteropServices;
using System.IO;
using System.ComponentModel;
using System.Security;
using System.Threading;
using Microsoft.Win32.SafeHandles;
using System.Runtime.ConstrainedExecution;
using System.Security.Permissions;
namespace SafeHandleDemo
{
internal class MySafeFileHandle : SafeHandleZeroOrMinusOneIsInvalid
{
// Create a SafeHandle, informing the base class
// that this SafeHandle instance "owns" the handle,
// and therefore SafeHandle should call
// our ReleaseHandle method when the SafeHandle
// is no longer in use.
private MySafeFileHandle()
: base(true)
{
}
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
override protected bool ReleaseHandle()
{
// Here, we must obey all rules for constrained execution regions.
return NativeMethods.CloseHandle(handle);
// If ReleaseHandle failed, it can be reported via the
// "releaseHandleFailed" managed debugging assistant (MDA). This
// MDA is disabled by default, but can be enabled in a debugger
// or during testing to diagnose handle corruption problems.
// We do not throw an exception because most code could not recover
// from the problem.
}
}
[SuppressUnmanagedCodeSecurity()]
internal static class NativeMethods
{
// Win32 constants for accessing files.
internal const int GENERIC_READ = unchecked((int)0x80000000);
// Allocate a file object in the kernel, then return a handle to it.
[DllImport("kernel32", SetLastError = true, CharSet = CharSet.Unicode)]
internal extern static MySafeFileHandle CreateFile(String fileName,
int dwDesiredAccess, System.IO.FileShare dwShareMode,
IntPtr securityAttrs_MustBeZero, System.IO.FileMode dwCreationDisposition,
int dwFlagsAndAttributes, IntPtr hTemplateFile_MustBeZero);
// Use the file handle.
[DllImport("kernel32", SetLastError = true)]
internal extern static int ReadFile(MySafeFileHandle handle, byte[] bytes,
int numBytesToRead, out int numBytesRead, IntPtr overlapped_MustBeZero);
// Free the kernel's file object (close the file).
[DllImport("kernel32", SetLastError = true)]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
internal extern static bool CloseHandle(IntPtr handle);
}
// The MyFileReader class is a sample class that accesses an operating system
// resource and implements IDisposable. This is useful to show the types of
// transformation required to make your resource wrapping classes
// more resilient. Note the Dispose and Finalize implementations.
// Consider this a simulation of System.IO.FileStream.
public class MyFileReader : IDisposable
{
// _handle is set to null to indicate disposal of this instance.
private MySafeFileHandle _handle;
public MyFileReader(String fileName)
{
// Security permission check.
String fullPath = Path.GetFullPath(fileName);
new FileIOPermission(FileIOPermissionAccess.Read, fullPath).Demand();
// Open a file, and save its handle in _handle.
// Note that the most optimized code turns into two processor
// instructions: 1) a call, and 2) moving the return value into
// the _handle field. With SafeHandle, the CLR's platform invoke
// marshaling layer will store the handle into the SafeHandle
// object in an atomic fashion. There is still the problem
// that the SafeHandle object may not be stored in _handle, but
// the real operating system handle value has been safely stored
// in a critical finalizable object, ensuring against leaking
// the handle even if there is an asynchronous exception.
MySafeFileHandle tmpHandle;
tmpHandle = NativeMethods.CreateFile(fileName, NativeMethods.GENERIC_READ,
FileShare.Read, IntPtr.Zero, FileMode.Open, 0, IntPtr.Zero);
// An async exception here will cause us to run our finalizer with
// a null _handle, but MySafeFileHandle's ReleaseHandle code will
// be invoked to free the handle.
// This call to Sleep, run from the fault injection code in Main,
// will help trigger a race. But it will not cause a handle leak
// because the handle is already stored in a SafeHandle instance.
// Critical finalization then guarantees that freeing the handle,
// even during an unexpected AppDomain unload.
Thread.Sleep(500);
_handle = tmpHandle; // Makes _handle point to a critical finalizable object.
// Determine if file is opened successfully.
if (_handle.IsInvalid)
throw new Win32Exception(Marshal.GetLastWin32Error(), fileName);
}
public void Dispose() // Follow the Dispose pattern - public nonvirtual.
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
// No finalizer is needed. The finalizer on SafeHandle
// will clean up the MySafeFileHandle instance,
// if it hasn't already been disposed.
// However, there may be a need for a subclass to
// introduce a finalizer, so Dispose is properly implemented here.
protected virtual void Dispose(bool disposing)
{
// Note there are three interesting states here:
// 1) CreateFile failed, _handle contains an invalid handle
// 2) We called Dispose already, _handle is closed.
// 3) _handle is null, due to an async exception before
// calling CreateFile. Note that the finalizer runs
// if the constructor fails.
if (_handle != null && !_handle.IsInvalid)
{
// Free the handle
_handle.Dispose();
}
// SafeHandle records the fact that we've called Dispose.
}
public byte[] ReadContents(int length)
{
if (_handle.IsInvalid) // Is the handle disposed?
throw new ObjectDisposedException("FileReader is closed");
// This sample code will not work for all files.
byte[] bytes = new byte[length];
int numRead = 0;
int r = NativeMethods.ReadFile(_handle, bytes, length, out numRead, IntPtr.Zero);
// Since we removed MyFileReader's finalizer, we no longer need to
// call GC.KeepAlive here. Platform invoke will keep the SafeHandle
// instance alive for the duration of the call.
if (r == 0)
throw new Win32Exception(Marshal.GetLastWin32Error());
if (numRead < length)
{
byte[] newBytes = new byte[numRead];
Array.Copy(bytes, newBytes, numRead);
bytes = newBytes;
}
return bytes;
}
}
static class Program
{
// Testing harness that injects faults.
private static bool _printToConsole = false;
private static bool _workerStarted = false;
private static void Usage()
{
Console.WriteLine("Usage:");
// Assumes that application is named HexViewer"
Console.WriteLine("HexViewer <fileName> [-fault]");
Console.WriteLine(" -fault Runs hex viewer repeatedly, injecting faults.");
}
private static void ViewInHex(Object fileName)
{
_workerStarted = true;
byte[] bytes;
using (MyFileReader reader = new MyFileReader((String)fileName))
{
bytes = reader.ReadContents(20);
} // Using block calls Dispose() for us here.
if (_printToConsole)
{
// Print up to 20 bytes.
int printNBytes = Math.Min(20, bytes.Length);
Console.WriteLine("First {0} bytes of {1} in hex", printNBytes, fileName);
for (int i = 0; i < printNBytes; i++)
Console.Write("{0:x} ", bytes[i]);
Console.WriteLine();
}
}
static void Main(string[] args)
{
if (args.Length == 0 || args.Length > 2 ||
args[0] == "-?" || args[0] == "/?")
{
Usage();
return;
}
String fileName = args[0];
bool injectFaultMode = args.Length > 1;
if (!injectFaultMode)
{
_printToConsole = true;
ViewInHex(fileName);
}
else
{
Console.WriteLine("Injecting faults - watch handle count in perfmon (press Ctrl-C when done)");
int numIterations = 0;
while (true)
{
_workerStarted = false;
Thread t = new Thread(new ParameterizedThreadStart(ViewInHex));
t.Start(fileName);
Thread.Sleep(1);
while (!_workerStarted)
{
Thread.Sleep(0);
}
t.Abort(); // Normal applications should not do this.
numIterations++;
if (numIterations % 10 == 0)
GC.Collect();
if (numIterations % 10000 == 0)
Console.WriteLine(numIterations);
}
}
}
}
}
備註
如需此 API 的詳細資訊,請參閱 SafeHandle的補充 API 備註。
給實施者的注意事項
若要建立衍生自 SafeHandle的類別,您必須知道如何建立及釋放操作系統句柄。 此程式對於不同的句柄類型不同,因為有些使用 CloseHandle 函式,而另一些則使用更特定的函式,例如 UnmapViewOfFile 或 FindClose。 基於這個理由,您必須為每個要包裝在安全句柄中的操作系統句柄類型,建立 SafeHandle 的衍生類別。
當您繼承自 SafeHandle時,必須覆寫下列成員:IsInvalid 和 ReleaseHandle()。
您也應該提供公用無參數建構函式,以表示無效句柄值的值呼叫基底建構函式,以及指出原生句柄是否由 SafeHandle 擁有的 Boolean 值,因此應該在處置該 SafeHandle 時釋放。
建構函式
SafeHandle(IntPtr, Boolean) |
使用指定的無效句柄值,初始化 SafeHandle 類別的新實例。 |
欄位
handle |
指定要包裝的句柄。 |
屬性
IsClosed |
取得值,指出句柄是否關閉。 |
IsInvalid |
在衍生類別中覆寫時,取得值,指出句柄值是否無效。 |
方法
Close() |
標記釋放和釋放資源的句柄。 |
DangerousAddRef(Boolean) |
在實例上手動遞增參考計數器 SafeHandle。 |
DangerousGetHandle() |
傳回 [handle] 欄位的值。 |
DangerousRelease() |
手動遞減 SafeHandle 實例上的參考計數器。 |
Dispose() |
釋放 SafeHandle 類別所使用的所有資源。 |
Dispose(Boolean) |
釋放 SafeHandle 類別所使用的 Unmanaged 資源,指定是否要執行一般處置作業。 |
Equals(Object) |
判斷指定的物件是否等於目前的物件。 (繼承來源 Object) |
Finalize() |
釋放與句柄相關聯的所有資源。 |
GetHashCode() |
做為預設哈希函式。 (繼承來源 Object) |
GetType() |
取得目前實例的 Type。 (繼承來源 Object) |
MemberwiseClone() |
建立目前 Object的淺層複本。 (繼承來源 Object) |
ReleaseHandle() |
在衍生類別中覆寫時,執行釋放句柄所需的程序代碼。 |
SetHandle(IntPtr) |
將句柄設定為指定的既有句柄。 |
SetHandleAsInvalid() |
將句柄標示為不再使用。 |
ToString() |
傳回表示目前 物件的字串。 (繼承來源 Object) |