Sdílet prostřednictvím


Databricks Runtime 8.4 pro ML (EoS)

Poznámka:

Podpora této verze Databricks Runtime skončila. Datum ukončení podpory najdete v tématu Historie ukončení podpory. Všechny podporované verze databricks Runtime najdete v poznámkách k verzi Databricks Runtime a kompatibilitu.

Databricks vydala tuto verzi v červenci 2021.

Databricks Runtime 8.4 pro Machine Learning poskytuje připravené prostředí pro strojové učení a datové vědy založené na databricks Runtime 8.4 (EoS). Databricks Runtime ML obsahuje mnoho oblíbených knihoven strojového učení, včetně TensorFlow, PyTorch a XGBoost. Podporuje také distribuované trénování hlubokého učení pomocí Horovodu.

Další informace, včetně pokynů k vytvoření clusteru Databricks Runtime ML, najdete v tématu AI a strojové učení v Databricks.

Nové funkce a vylepšení

Databricks Runtime 8.4 ML je postaven na Databricks Runtime 8.4. Informace o novinkách v Databricks Runtime 8.4, včetně Apache Spark MLlib a SparkR, najdete ve zprávě k vydání verze Databricks Runtime 8.4 (EoS ).

FeatureStoreClient v0.3.2

  • Povolit názvy tabulek funkcí a funkcí, které jsou v konfliktu s rezervovanými slovy SQL
  • Ověřte, že zadané datové rámce jsou datové rámce PySpark (pyspark.sql.dataframe.DataFrame).

Mosaic AutoML v1.1.0

  • Aktualizovaná verze AutoML, která se dodává s Modulem Databricks Runtime 8.4 ML, obsahuje některé opravy chyb a vylepšení stability.
  • Klasifikace AutoML teď také spouští zkušební verze s LGBMClassifier
  • Regrese AutoML teď také spouští zkušební verze s LGBMRegressorem .

Hlavní změny prostředí Databricks Runtime ML v Pythonu

Hlavní změny prostředí Pythonu databricks Runtime 8.4 (EoS) najdete v databricks Runtime. Úplný seznam nainstalovaných balíčků Pythonu a jejich verzí najdete v knihovnách Pythonu.

Upgradované balíčky Pythonu

  • koalas 1.8.0 -> 1.8.1
  • horovod 0.21.3 -> 0.22.1
  • mleap 0.16.1 -> 0.17.0
  • mlflow 1.16.0 -> 1.18.0
  • pandas-profiling 2.11.0 -> 3.0.0
  • petastorm 0.10.0 -> 0.11.1
  • pytorch 1.8.1 -> 1.9.0
  • tensorboard 2.4.1 -> 2.5.0
  • tensorflow 2.4.1 -> 2.5.0
  • torchvision 0.9.1 -> 0.10.0
  • xgboost 1.4.1 -> 1.4.2

Zastaralé

Následující změny jsou zastaralé a odeberou se v Databricks Runtime 9.0:

  • V HorovodRunneru nastavujte np=0, kde je počet paralelních procesů, které np se mají použít pro úlohu Horovod.
  • Knihovna Intel Math Kernel Library (Intel MKL) spolu s podřízenými variantami balíčků, které na něm závisí.
  • azure-core Knihovna Pythonu pro základní výjimky a moduly Azure
  • Klient azure-storage-blob knihovny Python pro interakci se službou Azure Storage Blob Service
  • Knihovna msrest Pythonu pro generování AutoRest swaggeru
  • docker Knihovna Pythonu pro rozhraní API modulu Dockeru
  • querystring-parser Knihovna Pythonu pro parsování dotazů v Pythonu/Django
  • Knihovna intel-openmp Pythonu pro vytváření vícevláknového softwaru

Prostředí systému

Systémové prostředí v Databricks Runtime 8.4 ML se liší od Databricks Runtime 8.4 následujícím způsobem:

Knihovny

Následující části obsahují seznam knihoven zahrnutých v Databricks Runtime 8.4 ML, které se liší od knihoven zahrnutých v Databricks Runtime 8.4.

V této části:

Knihovny nejvyšší úrovně

Databricks Runtime 8.4 ML obsahuje následující knihovny nejvyšší úrovně:

Knihovny Pythonu

Databricks Runtime 8.4 ML používá ke správě balíčků Pythonu Conda a obsahuje mnoho oblíbených balíčků ML.

Kromě balíčků zadaných v prostředíCh Conda v následujících částech obsahuje Databricks Runtime 8.4 ML také následující balíčky:

  • hyperopt 0.2.5.db2
  • sparkdl 2.1.0.db4
  • feature_store 0.3.2
  • automl 1.1.0

Knihovny Pythonu v clusterech procesorů

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - bzip2=1.0.8=h7b6447c_0
  - ca-certificates=2021.5.25=h06a4308_1
  - cachetools=4.2.2=pyhd3eb1b0_0
  - certifi=2021.5.30=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cpuonly=1.0=0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - ffmpeg=4.2.2=h20bf706_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - fsspec=0.8.3=py_0
  - future=0.18.2=py38_1
  - gast=0.4.0=py_0
  - gitdb=4.0.7=pyhd3eb1b0_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - gmp=6.1.2=h6c8ec71_1
  - gnutls=3.6.15=he1e5248_0
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38h06a4308_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lame=3.100=h7b6447c_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libidn2=2.3.1=h27cfd23_0
  - libopus=1.3.1=h7b6447c_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtasn1=4.16.0=h27cfd23_0
  - libtiff=4.1.0=h2733197_1
  - libunistring=0.9.10=h27cfd23_0
  - libuv=1.40.0=h7b6447c_0
  - libvpx=1.7.0=h439df22_0
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - nettle=3.7.3=hbbd107a_1
  - networkx=2.5.1=pyhd3eb1b0_0
  - ninja=1.10.2=hff7bd54_1
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openh264=2.1.0=hd408876_0
  - openssl=1.1.1k=h27cfd23_0
  - packaging=20.4=py_0
  - pandas=1.1.5=py38ha9443f7_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytorch=1.9.0=py3.8_cpu_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - torchvision=0.10.0=py38_cpu
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - x264=1!157.20191217=h7b6447c_0
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - bottleneck==1.3.2
    - convertdate==2.3.2
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - facets-overview==1.0.0
    - flatbuffers==1.12
    - grpcio==1.34.1
    - h5py==3.1.0
    - hijri-converter==2.1.3
    - holidays==0.10.5.2
    - horovod==0.22.1
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-nightly==2.5.0.dev2021032900
    - keras-preprocessing==1.1.2
    - koalas==1.8.1
    - korean-lunar-calendar==0.2.1
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.17.0
    - mlflow-skinny==1.18.0
    - msrest==0.6.21
    - multimethod==1.4
    - nbclient==0.5.3
    - nbconvert==6.1.0
    - nbformat==5.1.3
    - nest-asyncio==1.5.1
    - notebook==6.4.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==3.0.0
    - pandocfilters==1.4.3
    - petastorm==0.11.1
    - phik==0.11.2
    - prometheus-client==0.11.0
    - pyarrow==1.0.1
    - pydantic==1.8.2
    - pymeeus==0.5.11
    - pyrsistent==0.18.0
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.7.1
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.1.0
    - tensorboard==2.5.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow-cpu==2.5.0
    - tensorflow-estimator==2.5.0
    - termcolor==1.1.0
    - terminado==0.10.1
    - testpath==0.5.0
    - visions==0.7.1
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.4.2
prefix: /databricks/conda/envs/databricks-ml

Knihovny Pythonu v clusterech GPU

name: databricks-ml-gpu
channels:
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.7.4=py38h27cfd23_1
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38h06a4308_0
  - async-timeout=3.0.1=py38h06a4308_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=pyhd3eb1b0_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38h06a4308_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - ca-certificates=2021.5.25=h06a4308_1
  - cachetools=4.2.2=pyhd3eb1b0_0
  - certifi=2021.5.30=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=pyhd3eb1b0_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38h06a4308_1
  - entrypoints=0.3=py38_0
  - flask=1.1.2=pyhd3eb1b0_0
  - freetype=2.10.4=h5ab3b9f_0
  - fsspec=0.8.3=py_0
  - future=0.18.2=py38_1
  - gast=0.4.0=py_0
  - gitdb=4.0.7=pyhd3eb1b0_0
  - gitpython=3.1.12=pyhd3eb1b0_1
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38h06a4308_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=pyhd3eb1b0_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.3=py38h06a4308_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=5.1.0=py38h27cfd23_2
  - ncurses=6.2=he6710b0_1
  - networkx=2.5.1=pyhd3eb1b0_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openssl=1.1.1k=h27cfd23_0
  - packaging=20.4=py_0
  - pandas=1.1.5=py38ha9443f7_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.3=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4
  - python-dateutil=2.8.1=pyhd3eb1b0_0
  - python-editor=1.0.4=py_0
  - pytz=2020.5=pyhd3eb1b0_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7.2=pyhd3eb1b0_1
  - s3transfer=0.3.6=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h27cfd23_2
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.5=pyhd3eb1b0_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38h06a4308_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=pyhd3eb1b0_0
  - typing-extensions=3.7.4.3=hd3eb1b0_0
  - typing_extensions=3.7.4.3=pyh06a4308_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=pyhd3eb1b0_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - argon2-cffi==20.1.0
    - astunparse==1.6.3
    - async-generator==1.10
    - azure-core==1.11.0
    - azure-storage-blob==12.7.1
    - bleach==3.3.0
    - bottleneck==1.3.2
    - convertdate==2.3.2
    - databricks-cli==0.14.3
    - defusedxml==0.7.1
    - diskcache==5.2.1
    - docker==4.4.4
    - facets-overview==1.0.0
    - flatbuffers==1.12
    - grpcio==1.34.1
    - h5py==3.1.0
    - hijri-converter==2.1.3
    - holidays==0.10.5.2
    - horovod==0.22.1
    - htmlmin==0.1.12
    - imagehash==4.2.0
    - ipywidgets==7.6.3
    - joblibspark==0.3.0
    - jsonschema==3.2.0
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.0
    - keras-nightly==2.5.0.dev2021032900
    - keras-preprocessing==1.1.2
    - koalas==1.8.1
    - korean-lunar-calendar==0.2.1
    - llvmlite==0.36.0
    - missingno==0.4.2
    - mistune==0.8.4
    - mleap==0.17.0
    - mlflow-skinny==1.18.0
    - msrest==0.6.21
    - multimethod==1.4
    - nbclient==0.5.3
    - nbconvert==6.1.0
    - nbformat==5.1.3
    - nest-asyncio==1.5.1
    - notebook==6.4.0
    - numba==0.53.1
    - opt-einsum==3.3.0
    - pandas-profiling==3.0.0
    - pandocfilters==1.4.3
    - petastorm==0.11.1
    - phik==0.11.2
    - pyarrow==1.0.1
    - pydantic==1.8.2
    - pymeeus==0.5.11
    - pyrsistent==0.17.3
    - pywavelets==1.1.1
    - pyyaml==5.4.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - send2trash==1.7.1
    - shap==0.39.0
    - slicer==0.0.7
    - spark-tensorflow-distributor==0.1.0
    - tangled-up-in-unicode==0.1.0
    - tensorboard==2.5.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow==2.5.0
    - tensorflow-estimator==2.5.0
    - termcolor==1.1.0
    - terminado==0.10.1
    - testpath==0.5.0
    - torch==1.9.0
    - torchvision==0.10.0
    - visions==0.7.1
    - webencodings==0.5.1
    - widgetsnbextension==3.5.1
    - xgboost==1.4.2
prefix: /databricks/conda/envs/databricks-ml-gpu

Balíčky Spark obsahující moduly Pythonu

Balíček Spark Modul Pythonu Verze
graphframes graphframes 0.8.1-db3-spark3.1

Knihovny jazyka R

Knihovny R jsou identické s knihovnami jazyka R v Databricks Runtime 8.4.

Knihovny Java a Scala (cluster Scala 2.12)

Kromě knihoven Java a Scala v Databricks Runtime 8.4 obsahuje Databricks Runtime 8.4 ML následující jary:

Clustery procesoru

ID skupiny ID artefaktu Verze
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.4.1
ml.dmlc xgboost4j_2.12 1.4.1
org.mlflow mlflow-client 1.18.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clustery GPU

ID skupiny ID artefaktu Verze
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark-gpu_2.12 1.4.1
ml.dmlc xgboost4j-gpu_2.12 1.4.1
org.mlflow mlflow-client 1.18.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0