Databricks Runtime 10.4 LTS pour le Machine Learning
Databricks Runtime 10.4 LTS pour le Machine Learning fournit un environnement prêt à l’emploi pour le Machine Learning et la science des données basé sur Databricks Runtime 10.4 LTS. Databricks Runtime ML contient de nombreuses bibliothèques populaires de Machine Learning, notamment TensorFlow, PyTorch et XGBoost. Databricks Runtime ML comprend AutoML, un outil permettant d’effectuer l’apprentissage automatique des pipelines Machine Learning. Databricks Runtime ML prend également en charge l'apprentissage profond distribué à l'aide d'Horovod.
Notes
LTS (Long Term Support) signifie que cette version bénéficie d’un support à long terme. Consultez Cycle de vie de la version de Databricks Runtime LTS.
Pour plus d’informations, notamment les instructions relatives à la création d’un cluster Databricks Runtime ML, consultez IA et Machine Learning sur Databricks.
Conseil
Pour afficher les notes de publication des versions de Databricks Runtime qui ont atteint la fin du support (EoS), consultez Fin de support des notes de publication des versions de Databricks Runtime. Les versions EoS de Databricks Runtime ont été supprimées et peuvent ne pas être mises à jour.
Améliorations et nouvelles fonctionnalités
Databricks Runtime 10.4 ML s’appuie sur Databricks Runtime 10.4 LTS. Pour plus d’informations sur les nouveautés de Databricks Runtime 10.4 LTS, y compris Apache Spark MLlib et SparkR, consultez les notes de publication de Databricks Runtime 10.4 LTS.
Améliorations apportées à Mosaïque AutoML
Les améliorations suivantes ont été apportées à Mosaïque AutoML.
Mosaïque AutoML est généralement disponible
À compter de Databricks Runtime 10.4 LTS ML, Mosaïque AutoML est généralement disponible.
Imputation de valeurs manquantes
Vous pouvez maintenant spécifier comment les valeurs nulles sont imputées. Par défaut, AutoML sélectionne une méthode d’imputation en fonction du type et du contenu de la colonne. Consultez Imputer les valeurs manquantes pour plus d’informations.).
Sélection de colonnes à partir de l’interface utilisateur
Pour les problèmes de classification et de régression, vous pouvez désormais utiliser l’interface utilisateur en plus de l’API pour spécifier les colonnes que AutoML doit ignorer lors de ses calculs. Consultez Sélection de colonne.
Nouveau type de données
AutoML prend désormais en charge les types de tableau numériques.
Emplacement personnalisé des blocs-notes générés et de l’expérience
Vous pouvez maintenant spécifier un emplacement dans l’espace de travail où AutoML doit enregistrer les blocs-notes et les expériences générés. Utilise le paramètre experiment_dir
. Consultez la référence de l’API Python De Mosaïque AutoML.
Améliorations apportées à Databricks Feature Store
Les améliorations suivantes ont été apportées au Databricks Feature Store.
- Vous pouvez également inscrire une table Delta existante en tant que table de caractéristiques.
Environnement du système
L’environnement système de Databricks Runtime 10.4 LTS ML diffère de Databricks Runtime 10.4 LTS comme suit :
- DBUtils : Databricks Runtime ML n’inclut pas l’Utilitaire de bibliothèque (dbutils.library) (hérité).
Utilisez les commandes
%pip
à la place. Consultez Bibliothèques Python délimitées à un notebook. - Pour les clusters GPU, Databricks Runtime ML inclut les bibliothèques GPU NVIDIA suivantes :
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Bibliothèques
Les sections suivantes répertorient les bibliothèques incluses dans Databricks Runtime 10.4 LTS ML qui diffèrent de celles incluses dans Databricks Runtime 10.4 LTS.
Dans cette section :
- Bibliothèques de niveau supérieur
- Bibliothèques Python
- Bibliothèques R
- Bibliothèques Java et Scala (cluster Scala 2.12)
Bibliothèques de niveau supérieur
Databricks Runtime 10.4 LTS ML comprend les bibliothèquesde niveau supérieur suivantes :
- GraphFrames
- Horovod et HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliothèques Python
Databricks Runtime 10.4 LTS ML utilise Virtualenv pour la gestion des packages Python et comprend de nombreux packages de ML populaires.
En plus des packages spécifiés dans les sections suivantes, Databricks Runtime 10.4 LTS ML comprend également les packages suivants :
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db5
- feature_store 0.3.8
- automl 1.7.2
Bibliothèques Python sur les clusters UC
Pour reproduire l’environnement Python Databricks Runtime ML dans votre environnement virtuel Python local, téléchargez le fichier requirements-10.4.txt et exécutez pip install -r requirements-10.4.txt
. Cette commande installe toutes les bibliothèques open source que Databricks Runtime ML utilise, mais n’installe pas les bibliothèques développées Azure Databricks, telles que databricks-automl
, databricks-feature-store
ou la duplication Databricks de hyperopt
.
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | chiffrement | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.6 |
databricks-cli | 0.16.3 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.2.1 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0.3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | holidays | 0,12 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.1.2 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.7 |
murmurhash | 1.0.5 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empaquetage | 21,3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.0 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.0 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.5.0 |
pmdarima | 1.8.4 | preshed | 3.0.5 | prometheus-client | 0.10.1 |
prompt-toolkit | 3.0.17 | prophet | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.9.1 | pycparser | 2.20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.4.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pyrsistent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 |
python-dateutil | 2.8.1 | python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
requêtes | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.7.2 | s3transfer | 0.3.7 | sacremoses | 0.0.46 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1.2 |
shap | 0.40.0 | simplejson | 3.17.2 | six | 1.15.0 |
segment | 0.0.7 | smart-open | 5.2.0 | smmap | 3.0.5 |
spacy | 3.2.1 | spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tenacity | 6.2.0 | tensorboard | 2.8.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 |
tensorflow-cpu | 2.8.0 | tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
tf-estimator-nightly | 2.8.0.dev2021122109 | thinc | 8.0.12 | threadpoolctl | 2.1.0 |
générateurs de jetons | 0.10.3 | torch | 1.10.2+cpu | torchvision | 0.11.3+cpu |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
transformateurs | 4.16.2 | typer | 0.3.2 | typing-extensions | 3.7.4.3 |
ujson | 4.0.2 | unattended-upgrades | 0.1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | visions | 0.7.4 | wasabi | 0.8.2 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.5.2 | zipp | 3.4.1 |
Bibliothèques Python sur les clusters GPU
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | chiffrement | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.6 |
databricks-cli | 0.16.3 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
decorator | 5.0.6 | defusedxml | 0.7.1 | dill | 0.3.2 |
diskcache | 5.2.1 | distlib | 0.3.4 | distro-info | 0.23ubuntu1 |
entrypoints | 0.3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | hijri-converter | 2.2.3 | holidays | 0,12 |
horovod | 0.23.0 | htmlmin | 0.1.12 | huggingface-hub | 0.1.2 |
idna | 2.10 | ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
itsdangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | koalas | 1.8.2 |
korean-lunar-calendar | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.7 |
murmurhash | 1.0.5 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2.5 |
nltk | 3.6.1 | notebook | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
empaquetage | 21,3 | pandas | 1.2.4 | pandas-profiling | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.0 | patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.0 | pickleshare | 0.7.5 |
Pillow | 8.2.0 | pip | 21.0.1 | plotly | 5.5.0 |
pmdarima | 1.8.4 | preshed | 3.0.5 | prompt-toolkit | 3.0.17 |
prophet | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.9.1 |
pycparser | 2.20 | pydantic | 1.8.2 | Pygments | 2.8.1 |
PyGObject | 3.36.0 | PyMeeus | 0.5.11 | PyNaCl | 1.4.0 |
pyodbc | 4.0.30 | pyparsing | 2.4.7 | pyrsistent | 0.17.3 |
pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 | python-dateutil | 2.8.1 |
python-editor | 1.0.4 | python-engineio | 4.3.0 | python-socketio | 5.4.1 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | requêtes | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | rsa | 4.7.2 |
s3transfer | 0.3.7 | sacremoses | 0.0.46 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1.2 | shap | 0.40.0 |
simplejson | 3.17.2 | six | 1.15.0 | segment | 0.0.7 |
smart-open | 5.2.0 | smmap | 3.0.5 | spacy | 3.2.1 |
spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 | spark-tensorflow-distributor | 1.0.0 |
sqlparse | 0.4.1 | srsly | 2.4.1 | ssh-import-id | 5.10 |
statsmodels | 0.12.2 | tabulate | 0.8.7 | tangled-up-in-unicode | 0.1.0 |
tenacity | 6.2.0 | tensorboard | 2.8.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 | tensorflow | 2.8.0 |
tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 | termcolor | 1.1.0 |
terminado | 0.9.4 | testpath | 0.4.4 | tf-estimator-nightly | 2.8.0.dev2021122109 |
thinc | 8.0.12 | threadpoolctl | 2.1.0 | générateurs de jetons | 0.10.3 |
torch | 1.10.2+cu111 | torchvision | 0.11.3+cu111 | tornado | 6.1 |
tqdm | 4.59.0 | traitlets | 5.0.5 | transformateurs | 4.16.2 |
typer | 0.3.2 | typing-extensions | 3.7.4.3 | ujson | 4.0.2 |
unattended-upgrades | 0.1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
visions | 0.7.4 | wasabi | 0.8.2 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
wheel | 0.36.2 | widgetsnbextension | 3.5.1 | wrapt | 1.12.1 |
xgboost | 1.5.2 | zipp | 3.4.1 |
Packages Spark contenant des modules Python
Package Spark | Module Python | Version |
---|---|---|
graphframes | graphframes | 0.8.2-db1-spark3.2 |
Bibliothèques R
Les bibliothèques R sont identiques aux bibliothèques R dans Databricks Runtime 10.4 LTS.
Bibliothèques Java et Scala (cluster Scala 2.12)
En plus des bibliothèques Java et Scala dans Databricks Runtime 10.4 LTS, Databricks Runtime 10.4 LTS ML contient les fichiers JAR suivants :
Clusters UC
ID de groupe | ID d’artefact | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clusters GPU
ID de groupe | ID d’artefact | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |