Daftar SKU titik akhir online yang terkelola
Tabel berikut ini memperlihatkan unit penyimpanan stok (SKU) komputer virtual (VM) yang didukung untuk titik akhir online terkelola Azure Pembelajaran Mesin. Setiap SKU adalah kode alfanumerik unik yang ditetapkan ke VM tertentu yang dapat dibeli.
Nama SKU lengkap yang tercantum dalam tabel dapat digunakan untuk permintaan templat Azure CLI atau Azure Resource Manager (templat ARM) untuk membuat dan memperbarui penyebaran.
Untuk informasi selengkapnya tentang detail konfigurasi seperti CPU dan RAM, lihat Harga Pembelajaran Mesin Azure dan ukuran VM.
Family Name | Nama Ukuran VM | Mendukung Infiniband | Sistem | numberOfGPU | numberOfCores | Lewati Reservasi 20% |
---|---|---|---|---|---|---|
standardDASv4Family | STANDARD_D2AS_V4 | - | Cpu | 0 | 2 | - |
standardDASv4Family | STANDARD_D4AS_V4 | - | Cpu | 0 | 4 | - |
standardDASv4Family | STANDARD_D8AS_V4 | - | Cpu | 0 | 8 | - |
standardDASv4Family | STANDARD_D16AS_V4 | - | Cpu | 0 | 16 | - |
standardDASv4Family | STANDARD_D32AS_V4 | - | Cpu | 0 | 32 | - |
standardDASv4Family | STANDARD_D48AS_V4 | - | Cpu | 0 | 48 | - |
standardDASv4Family | STANDARD_D64AS_V4 | - | Cpu | 0 | 64 | - |
standardDASv4Family | STANDARD_D96AS_V4 | - | Cpu | 0 | 96 | - |
standardDAv4Family | STANDARD_D2A_V4 | - | Cpu | 0 | 2 | - |
standardDAv4Family | STANDARD_D4A_V4 | - | Cpu | 0 | 4 | - |
standardDAv4Family | STANDARD_D8A_V4 | - | Cpu | 0 | 8 | - |
standardDAv4Family | STANDARD_D16A_V4 | - | Cpu | 0 | 16 | - |
standardDAv4Family | STANDARD_D32A_V4 | - | Cpu | 0 | 32 | - |
standardDAv4Family | STANDARD_D48A_V4 | - | Cpu | 0 | 48 | - |
standardDAv4Family | STANDARD_D64A_V4 | - | Cpu | 0 | 64 | - |
standardDAv4Family | STANDARD_D96A_V4 | - | Cpu | 0 | 96 | - |
standardDSv2Family | STANDARD_DS1_V2 | - | Cpu | 0 | 1 | - |
standardDSv2Family | STANDARD_DS2_V2 | - | Cpu | 0 | 2 | - |
standardDSv2Family | STANDARD_DS3_V2 | - | Cpu | 0 | 4 | - |
standardDSv2Family | STANDARD_DS4_V2 | - | Cpu | 0 | 8 | - |
standardDSv2Family | STANDARD_DS5_V2 | - | Cpu | 0 | 16 | - |
standardESv3Family | STANDARD_E2S_V3 | - | Cpu | 0 | 2 | - |
standardESv3Family | STANDARD_E4S_V3 | - | Cpu | 0 | 4 | - |
standardESv3Family | STANDARD_E8S_V3 | - | Cpu | 0 | 8 | - |
standardESv3Family | STANDARD_E16S_V3 | - | Cpu | 0 | 16 | - |
standardESv3Family | STANDARD_E32S_V3 | - | Cpu | 0 | 32 | - |
standardESv3Family | STANDARD_E48S_V3 | - | Cpu | 0 | 48 | - |
standardESv3Family | STANDARD_E64S_V3 | - | Cpu | 0 | 64 | - |
standardFSv2Family | STANDARD_F2S_V2 | - | Cpu | 0 | 2 | - |
standardFSv2Family | STANDARD_F4S_V2 | - | Cpu | 0 | 4 | - |
standardFSv2Family | STANDARD_F8S_V2 | - | Cpu | 0 | 8 | - |
standardFSv2Family | STANDARD_F16S_V2 | - | Cpu | 0 | 16 | - |
standardFSv2Family | STANDARD_F32S_V2 | - | Cpu | 0 | 32 | - |
standardFSv2Family | STANDARD_F48S_V2 | - | Cpu | 0 | 48 | - |
standardFSv2Family | STANDARD_F64S_V2 | - | Cpu | 0 | 64 | - |
standardFSv2Family | STANDARD_F72S_V2 | - | Cpu | 0 | 72 | - |
standardFXMDVSFamily | STANDARD_FX4MDS | - | Cpu | 0 | 4 | - |
standardFXMDVSFamily | STANDARD_FX12MDS | - | Cpu | 0 | 12 | - |
standardFXMDVSFamily | STANDARD_FX24MDS | - | Cpu | 0 | 24 | - |
standardFXMDVSFamily | STANDARD_FX36MDS | - | Cpu | 0 | 36 | - |
standardFXMDVSFamily | STANDARD_FX48MDS | - | Cpu | 0 | 48 | - |
standardLASv3Family | STANDARD_L8AS_V3 | - | Cpu | 0 | 8 | - |
standardLASv3Family | STANDARD_L16AS_V3 | - | Cpu | 0 | 16 | - |
standardLASv3Family | STANDARD_L32AS_V3 | - | Cpu | 0 | 32 | - |
standardLASv3Family | STANDARD_L48AS_V3 | - | Cpu | 0 | 48 | - |
standardLASv3Family | STANDARD_L64AS_V3 | - | Cpu | 0 | 64 | - |
standardLASv3Family | STANDARD_L80AS_V3 | - | Cpu | 0 | 80 | - |
standardLSv2Family | STANDARD_L8S_V2 | - | Cpu | 0 | 8 | - |
standardLSv2Family | STANDARD_L16S_V2 | - | Cpu | 0 | 16 | - |
standardLSv2Family | STANDARD_L32S_V2 | - | Cpu | 0 | 32 | - |
standardLSv2Family | STANDARD_L48S_V2 | - | Cpu | 0 | 48 | - |
standardLSv2Family | STANDARD_L64S_V2 | - | Cpu | 0 | 64 | - |
standardLSv2Family | STANDARD_L80S_V2 | - | Cpu | 0 | 80 | - |
standardLSv3Family | STANDARD_L8S_V3 | - | Cpu | 0 | 8 | - |
standardLSv3Family | STANDARD_L16S_V3 | - | Cpu | 0 | 16 | - |
standardLSv3Family | STANDARD_L32S_V3 | - | Cpu | 0 | 32 | - |
standardLSv3Family | STANDARD_L48S_V3 | - | Cpu | 0 | 48 | - |
standardLSv3Family | STANDARD_L64S_V3 | - | Cpu | 0 | 64 | - |
standardLSv3Family | STANDARD_L80S_V3 | - | Cpu | 0 | 80 | - |
standardNCADSA100v4Family | STANDARD_NC24ADS_A100_V4 | - | NvidiaGpu | 1 | 24 | Ya |
standardNCADSA100v4Family | STANDARD_NC48ADS_A100_V4 | - | NvidiaGpu | 2 | 48 | Ya |
standardNCADSA100v4Family | STANDARD_NC96ADS_A100_V4 | - | NvidiaGpu | 4 | 96 | Ya |
Keluarga NCASv3_T4 Standar | STANDARD_NC4AS_T4_V3 | - | NvidiaGpu | 1 | 4 | - |
Keluarga NCASv3_T4 Standar | STANDARD_NC8AS_T4_V3 | - | NvidiaGpu | 1 | 8 | - |
Keluarga NCASv3_T4 Standar | STANDARD_NC16AS_T4_V3 | - | NvidiaGpu | 1 | 16 | - |
Keluarga NCASv3_T4 Standar | STANDARD_NC64AS_T4_V3 | - | NvidiaGpu | 4 | 64 | - |
standardNCSv2Family | STANDARD_NC6S_V2 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv2Family | STANDARD_NC12S_V2 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv2Family | STANDARD_NC24S_V2 | - | NvidiaGpu | 4 | 24 | - |
standardNCSv3Family | STANDARD_NC6S_V3 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv3Family | STANDARD_NC12S_V3 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv3Family | STANDARD_NC24S_V3 | - | NvidiaGpu | 4 | 24 | - |
standardNCADSH100v5Family | STANDARD_NC40ADS_H100_V5 | - | NvidiaGpu | 1 | 40 | Ya |
standardNCADSH100v5Family | STANDARD_NC80ADIS_H100_V5 | - | NvidiaGpu | 2 | 80 | Ya |
NDAMSv4_A100Family standar | STANDARD_ND96AMSR_A100_V4 | Ya | NvidiaGpu | 8 | 96 | Ya |
Keluarga NDASv4_A100 Standar | STANDARD_ND96ASR_V4 | Ya | NvidiaGpu | 8 | 96 | Ya |
standardNDSv2Family | STANDARD_ND40RS_V2 | Ya | NvidiaGpu | 8 | 40 | Ya |
standardNDv5H100Family | STANDARD_ND96IS_H100_v5 | - | NvidiaGpu | 8 | 96 | Ya |
standardNDv5H100Family | STANDARD_ND96ISR_H100_v5 | Ya | NvidiaGpu | 8 | 96 | Ya |
Perhatian
SKU VM kecil seperti Standard_DS1_v2
dan Standard_F2s_v2
mungkin terlalu kecil untuk model yang lebih besar dan dapat menyebabkan penghentian kontainer karena memori yang tidak cukup, tidak cukup ruang pada disk, atau kegagalan pemeriksaan karena membutuhkan waktu terlalu lama untuk memulai kontainer. Jika Anda menghadapi kesalahan OutOfQuota atau kesalahan ReourceNotReady, coba SKU VM yang lebih besar. Jika Anda ingin mengurangi biaya penyebaran beberapa model dengan titik akhir online terkelola, lihat Penyebaran untuk beberapa model lokal.
Catatan
Sebaiknya anda memiliki lebih dari 3 instans untuk penyebaran dalam skenario produksi. Selain itu, Azure Pembelajaran Mesin mencadangkan 20% sumber daya komputasi Anda untuk melakukan peningkatan pada beberapa SKU VM seperti yang dijelaskan dalam Alokasi kuota komputer virtual untuk penyebaran. SKU VM yang dikecualikan dari reservasi kuota tambahan ini ditentukan dalam kolom "Lewati Reservasi 20%".