Nota
O acesso a esta página requer autorização. Pode tentar iniciar sessão ou alterar os diretórios.
O acesso a esta página requer autorização. Pode tentar alterar os diretórios.
19.1 Generalidades
Uma interface define um contrato. Uma classe ou estrutura que implemente uma interface deve aderir ao seu contrato. Uma interface pode herdar de várias interfaces base, e uma classe ou struct pode implementar várias interfaces.
As interfaces podem conter vários tipos de membros, conforme descrito no §19.4. A interface em si pode fornecer uma implementação para alguns ou todos os membros da função que declara. Os membros para os quais a interface não fornece uma implementação são abstratos. Suas implementações devem ser fornecidas por classes ou estruturas que implementam a interface, ou interface derivada que fornecem uma definição predominante.
Nota: Historicamente, a adição de um novo membro de função a uma interface afetava todos os consumidores existentes desse tipo de interface; foi uma mudança de rutura. A adição de implementações de membros da função de interface permitiu que os desenvolvedores atualizassem uma interface enquanto ainda permitiam que quaisquer implementadores substituíssem essa implementação. Os usuários da interface podem aceitar a implementação como uma mudança ininterrupta; no entanto, se seus requisitos forem diferentes, eles podem substituir as implementações fornecidas. Nota final
19.2 Declarações de interface
19.2.1 Generalidades
Um interface_declaration é um type_declaration (§14.7) que declara um novo tipo de interface.
interface_declaration
: attributes? interface_modifier* 'partial'? 'interface'
identifier variant_type_parameter_list? interface_base?
type_parameter_constraints_clause* interface_body ';'?
;
Um interface_declaration consiste num conjunto opcional de atributos (§23), seguido por um conjunto opcional de interface_modifiers (§19.2.2), seguido por um modificador parcial opcional (§15.2.7), seguido pela palavra-chave interface e um identificador que nomeia a interface, seguido por uma especificação variant_type_parameter_list opcional (§19.2.3), seguida por uma especificação interface_base opcional (§19.2.4), seguido de uma especificação opcional do type_parameter_constraints_clause(§15.2.5), seguida de um interface_body (§19.3), opcionalmente seguido de ponto e vírgula.
Uma declaração de interface não deve fornecer type_parameter_constraints_clauses a menos que também forneça um variant_type_parameter_list.
Uma declaração de interface que fornece um variant_type_parameter_list é uma declaração de interface genérica. Além disso, qualquer interface aninhada dentro de uma declaração de classe genérica ou uma declaração struct genérica é ela própria uma declaração de interface genérica, uma vez que os argumentos de tipo para o tipo que contém devem ser fornecidos para criar um tipo construído (§8.4).
19.2.2 Modificadores de interface
Um interface_declaration pode, opcionalmente, incluir uma sequência de modificadores de interface:
interface_modifier
: 'new'
| 'public'
| 'protected'
| 'internal'
| 'private'
| unsafe_modifier // unsafe code support
;
unsafe_modifier (§24.2) só está disponível em código não seguro (§24).
É um erro em tempo de compilação para o mesmo modificador aparecer várias vezes em uma declaração de interface.
O new modificador só é permitido em interfaces definidas dentro de uma classe. Especifica que a interface oculta um membro herdado com o mesmo nome, conforme descrito no §15.3.5.
Os publicmodificadores , protected, internale private controlam a acessibilidade da interface. Dependendo do contexto em que a declaração de interface ocorre, apenas alguns desses modificadores podem ser permitidos (§7.5.2). Quando uma declaração de tipo parcial (§15.2.7) inclui uma especificação de acessibilidade (através dos modificadores public, protected, internal, e private), aplicam-se as regras em §15.2.2.
19.2.3 Listas de parâmetros de tipo variante
19.2.3.1 Generalidades
As listas de parâmetros de tipo variante só podem ocorrer em tipos de interfaces e de delegados. A diferença em relação aos type_parameter_list comuns é a variance_annotation opcional em cada parâmetro de tipo.
variant_type_parameter_list
: '<' variant_type_parameter (',' variant_type_parameter)* '>'
;
variant_type_parameter
: attributes? variance_annotation? type_parameter
;
variance_annotation
: 'in'
| 'out'
;
Se a anotação de variância for out, o parâmetro type é dito ser covariante. Se a anotação de variância for in, o parâmetro de tipo é considerado contravariante. Se não houver anotação de variância, o parâmetro type é dito invariante.
Exemplo: No seguinte:
interface C<out X, in Y, Z> { X M(Y y); Z P { get; set; } }
Xé covariante,Yé contravariante e é invarianteZ.Exemplo final
Se uma interface genérica for declarada em várias partes (§15.2.3), cada declaração parcial deve especificar a mesma variância para cada parâmetro de tipo.
19.2.3.2 Segurança da variância
A ocorrência de anotações de variância na lista de parâmetros de tipo de um tipo restringe os locais onde os tipos podem ocorrer dentro da declaração de tipo.
Um tipo T é inseguro para saída se uma das seguintes condições for verdadeira:
-
Té um parâmetro de tipo contravariante -
Té um tipo de matriz com um tipo de elemento não seguro de saída -
Té um tipo de interface ou delegadoSᵢ,... Aₑconstruído a partir de um tipoS<Xᵢ, ... Xₑ>genérico onde, para pelo menos umAᵢ, verifica-se uma das seguintes condições:-
Xᵢé covariante ou invariante eAᵢnão é seguro em termos de saída. -
Xᵢé contravariante ou invariante eAᵢnão é seguro para entrada.
-
Um tipo T é inseguro de entrada se uma das seguintes condições for verdadeira:
-
Té um parâmetro de tipo covariante -
Té um tipo de matriz com um tipo de elemento não seguro de entrada -
Té um tipo de interface ou delegadoS<Aᵢ,... Aₑ>construído a partir de um tipoS<Xᵢ, ... Xₑ>genérico onde, para pelo menos umAᵢ, verifica-se uma das seguintes condições:-
Xᵢé covariante ou invariante eAᵢnão é seguro para entrada. -
Xᵢé contravariante ou invariante eAᵢé insegura em termos de saída.
-
Intuitivamente, um tipo de saída não segura é proibido em uma posição de saída, e um tipo de entrada não segura é proibido em uma posição de entrada.
Um tipo é seguro para saída se não for inseguro para saída e seguro para entrada se não for inseguro.
19.2.3.3 Conversão de variância
O objetivo das anotações de variância é fornecer conversões mais brandas (mas ainda seguras para tipos) para tipos de interface e delegados. Para o efeito, as definições de conversões implícitas (§10.2) e explícitas (§10.3) utilizam a noção de variância-convertibilidade, que é definida da seguinte forma:
Um tipo T<Aᵢ, ..., Aᵥ> é conversível em variância para um tipo T<Bᵢ, ..., Bᵥ> se T for uma interface ou um tipo delegado declarado com os parâmetros T<Xᵢ, ..., Xᵥ>de tipo variante e, para cada parâmetro Xᵢ de tipo de variante, uma das seguintes retenções:
-
Xᵢé covariante e existe uma referência implícita ou conversão de identidade deAᵢparaBᵢ -
Xᵢé contravariante e existe uma referência implícita ou conversão de identidade deBᵢparaAᵢ -
Xᵢé invariante e existe uma conversão de identidade deAᵢparaBᵢ
19.2.4 Interfaces de base
Uma interface pode herdar de zero ou mais tipos de interface, que são chamados de interfaces base explícitasda interface. Quando uma interface tem uma ou mais interfaces base explícitas, na declaração dessa interface, o identificador de interface é seguido por dois pontos e uma lista separada por vírgulas de tipos de interface base.
Uma interface derivada pode declarar novos membros que ocultam membros herdados (§7.7.2.3) declarados em interfaces base ou implementar explicitamente membros herdados (§19.6.2) declarados em interfaces base.
interface_base
: ':' interface_type_list
;
As interfaces de base explícitas podem ser construídas tipos de interface (§8.4, §19.2). Uma interface base não pode ser um parâmetro de tipo por si só, embora possa envolver os parâmetros de tipo que estão no escopo.
Para um tipo de interface construída, as interfaces de base explícitas são formadas ao considerar as declarações explícitas de interfaces base na declaração de tipo genérica e ao substituir, para cada type_parameter na declaração de interface de base, o correspondente type_argument do tipo construído.
As interfaces de base explícitas de uma interface devem ser pelo menos tão acessíveis como a própria interface (ponto 7.5.5).
Nota: Por exemplo, é um erro em tempo de compilação especificar uma
privateouinternalinterface no interface_base de umapublicinterface. Nota final
É um erro em tempo de compilação que uma interface herde direta ou indiretamente de si mesma.
As interfaces basede uma interface são as interfaces base explícitas e suas interfaces base. Em outras palavras, o conjunto de interfaces base é o fechamento transitivo completo das interfaces base explícitas, das suas interfaces base e assim por diante. Uma interface herda todos os membros das suas interfaces base.
Exemplo: No código seguinte
interface IControl { void Paint(); } interface ITextBox : IControl { void SetText(string text); } interface IListBox : IControl { void SetItems(string[] items); } interface IComboBox: ITextBox, IListBox {}as interfaces de base de
IComboBoxsãoIControl,ITextBox, eIListBox. Em outras palavras, aIComboBoxinterface acima herda membrosSetTexteSetItemsbem comoPaint.Exemplo final
Os membros herdados de um tipo genérico construído são herdados após a substituição do tipo. Ou seja, todos os tipos constituintes no membro têm os parâmetros de tipo da declaração de classe base substituídos pelos argumentos de tipo correspondentes usados na especificação class_base .
Exemplo: No código seguinte
interface IBase<T> { T[] Combine(T a, T b); } interface IDerived : IBase<string[,]> { // Inherited: string[][,] Combine(string[,] a, string[,] b); }A interface
IDerivedherda o métodoCombinedepois que o parâmetro do tipoTé substituído porstring[,].Exemplo final
Uma classe ou struct que implementa uma interface também implementa implicitamente todas as interfaces base da interface.
O tratamento de interfaces em várias partes de uma declaração de interface parcial (§15.2.7) é discutido mais pormenorizadamente no §15.2.4.3.
Todas as interfaces de base de uma interface devem ser seguras para a saída (§19.2.3.2).
19.3 Corpo da interface
O interface_body de uma interface define os membros da interface.
interface_body
: '{' interface_member_declaration* '}'
;
19.4 Membros da interface
19.4.1 Generalidades
Os membros de uma interface são os membros herdados das interfaces base e os membros declarados pela própria interface.
interface_member_declaration
: constant_declaration
| field_declaration
| method_declaration
| property_declaration
| event_declaration
| indexer_declaration
| static_constructor_declaration
| operator_declaration
| type_declaration
;
Esta cláusula aumenta a descrição dos membros nas classes (§15.3) com restrições para interfaces. Os membros da interface são declarados usando member_declarations com as seguintes regras adicionais:
- Não é permitida a finalizer_declaration .
- Construtores de instância, constructor_declarations, não são permitidos.
- Todos os membros da interface têm implicitamente acesso público; no entanto, um modificador de acesso explícito (§7.5.2) é permitido, exceto em construtores estáticos (§15.12).
- O
abstractmodificador está implícito para membros da função de interface sem corpos, esse modificador pode ser dado explicitamente. - Um membro da função de instância de interface cuja declaração inclui um corpo é um membro implícito,
virtuala menos que osealedmodificador ouprivateseja usado. Ovirtualmodificador pode ser dado explicitamente. -
privateUmsealedmembro ou função de uma interface deve ter um corpo. - Um
privatemembro da função não deve ter o modificadorsealed. - Uma interface derivada pode substituir um membro abstrato ou virtual declarado em uma interface base.
- Um membro da função explicitamente implementado não deve ter o modificador
sealed.
Algumas declarações, como constant_declaration (§15.4) não têm restrições nas interfaces.
Os membros herdados de uma interface especificamente não fazem parte do espaço de declaração da interface. Assim, uma interface pode declarar um membro com o mesmo nome ou assinatura que um membro herdado. Quando isso ocorre, diz-se que o membro da interface derivada oculta o membro da interface base. Ocultar um membro herdado não é considerado um erro, mas resulta em um aviso (§7.7.2.3).
Se um new modificador for incluído numa declaração que não oculte um membro herdado, um aviso será emitido em relação a isso.
Nota: Os membros em classe
objectnão são, a rigor, membros de qualquer interface (§19.4). No entanto, os membros em classeobjectestão disponíveis através da pesquisa de membros em qualquer tipo de interface (§12.5). Nota final
O conjunto de membros de uma interface declarado em várias partes (§15.2.7) é a união dos membros declarados em cada parte. Os corpos de todas as partes da declaração de interface partilham o mesmo espaço de declaração (§7.3), e o âmbito de cada membro (§7.7) estende-se aos corpos de todas as partes.
Exemplo: Considere uma interface
IAcom uma implementação para um membroMe uma propriedadeP. Um tipoCde implementação não fornece uma implementação para qualquer um ouMP. Eles devem ser acessados através de uma referência cujo tipo de tempo de compilação é uma interface que é implicitamente conversível emIAouIB. Esses membros não são encontrados por meio da pesquisa de membros em uma variável do tipoC.interface IA { public int P { get { return 10; } } public void M() { Console.WriteLine("IA.M"); } } interface IB : IA { public new int P { get { return 20; } } void IA.M() { Console.WriteLine("IB.M"); } } class C : IB { } class Test { public static void Main() { C c = new C(); ((IA)c).M(); // cast needed Console.WriteLine($"IA.P = {((IA)c).P}"); // cast needed Console.WriteLine($"IB.P = {((IB)c).P}"); // cast needed } }Dentro das interfaces
IAeIB, membroMé acessível diretamente pelo nome. No entanto, dentro do métodoMain, não podemos escreverc.M()ouc.P, como esses nomes não são visíveis. Para encontrá-los, são necessários moldes para o tipo de interface apropriado. A declaração de inMusa sintaxe explícita de implementação deIBinterface. Isso é necessário para fazer com que esse método substitua o de um emIA; o modificadoroverridenão pode ser aplicado a um membro da função. Exemplo final
19.4.2 Campos de interface
Esta cláusula aumenta a descrição dos campos nas classes §15.5 para campos declarados em interfaces.
Os campos de interface são declarados usando field_declarations (§15.5.1) com as seguintes regras adicionais:
- É um erro em tempo de compilação para field_declaration declarar um campo de instância.
Exemplo: O seguinte programa contém membros estáticos de vários tipos:
public interface IX { public const int Constant = 100; protected static int field; static IX() { Console.WriteLine("static members initialized"); Console.WriteLine($"constant = {IX.Constant}, field = {IX.field}"); field = 50; Console.WriteLine("static constructor has run"); } } public class Test: IX { public static void Main() { Console.WriteLine($"constant = {IX.Constant}, field = {IX.field}"); } }A produção produzida é
static members initialized constant = 100, field = 0 static constructor has run constant = 100, field = 50Exemplo final
Consulte §19.4.8 para obter informações sobre a alocação e inicialização de campos estáticos.
19.4.3 Métodos de interface
Esta cláusula aumenta a descrição de métodos nas classes §15.6 para métodos declarados em interfaces.
Os métodos de interface são declarados usando method_declarations (§15.6)). Os atributos, return_type, ref_return_type, identificador e parameter_list de uma declaração de método de interface têm o mesmo significado que os de uma declaração de método em uma classe. Os métodos de interface têm as seguintes regras adicionais:
method_modifier não inclui
override.Um método cujo corpo é um ponto-e-vírgula (
;) éabstract; oabstractmodificador não é necessário, mas é permitido.Uma declaração de método de interface que tem um corpo de bloco ou corpo de expressão como um method_body é
virtual; ovirtualmodificador não é necessário, mas é permitido.Um method_declaration só pode ter type_parameter_constraints_clausese tiver um type_parameter_list.
A lista de requisitos para combinações válidas de modificadores declaradas para um método de classe é alargada do seguinte modo:
- Uma declaração estática que não seja externa deve ter um corpo de bloco ou um corpo de expressão como method_body.
- Uma declaração virtual que não seja externa deve ter um corpo de bloco ou um corpo de expressão como method_body.
- Uma declaração particular que não seja externa deve ter um corpo de bloco ou um corpo de expressão como method_body.
- Uma declaração selada que não seja externa deve ter um corpo de bloco ou um corpo de expressão como method_body.
- Uma declaração assíncrona deve ter um corpo de bloco ou um corpo de expressão como method_body.
Todos os tipos de parâmetros de um método de interface devem ser seguros para a entrada (§19.2.3.2) e o tipo de retorno deve ser seguro para a
voidsaída ou para a saída.Quaisquer tipos de parâmetros de saída ou de referência devem também ser seguros para a produção.
Nota: Os parâmetros de saída devem ser seguros para entrada devido a restrições comuns de implementação. Nota final
Cada restrição de tipo de classe, restrição de tipo de interface e restrição de parâmetro de tipo em qualquer parâmetro de tipo do método deve ser segura para entradas.
Essas regras garantem que qualquer uso covariante ou contravariante da interface permaneça seguro para digitação.
Exemplo:
interface I<out T> { void M<U>() where U : T; // Error }está mal formado porque a utilização de
Tcomo restrição de parâmetro de tipo emUnão é segura para entradas.Se esta restrição não estivesse em vigor, seria possível violar a segurança do tipo da seguinte maneira:
interface I<out T> { void M<U>() where U : T; } class B {} class D : B {} class E : B {} class C : I<D> { public void M<D>() {...} } ... I<B> b = new C(); b.M<E>();Trata-se, na verdade, de um apelo à
C.M<E>. Mas essa chamada exige queEderive deD, então a segurança do tipo seria violada aqui.Exemplo final
Nota: Veja §19.4.2 para um exemplo que não apenas mostra um método estático com uma implementação, mas como esse método é chamado
Maine tem o tipo de retorno e assinatura corretos, também é um ponto de entrada. Nota final
Um método virtual com implementação declarada em uma interface pode ser substituído para ser abstrato em uma interface derivada. Isso é conhecido como reabstração.
Exemplo:
interface IA { void M() { Console.WriteLine("IA.M"); } } interface IB: IA { abstract void IA.M(); // reabstraction of M }Isso é útil em interfaces derivadas onde a implementação de um método é inadequada e uma implementação mais apropriada deve ser fornecida pela implementação de classes. Exemplo final
19.4.4 Propriedades da interface
Esta cláusula aumenta a descrição de propriedades em classes §15.7 para propriedades declaradas em interfaces.
As propriedades da interface são declaradas usando property_declarations (§15.7.1) com as seguintes regras adicionais:
property_modifier não inclui
override.Uma implementação explícita de membro da interface não deve conter um accessor_modifier (§15.7.3).
Uma interface derivada pode implementar explicitamente uma propriedade de interface abstrata declarada em uma interface base.
Nota: Como uma interface não pode conter campos de instância, uma propriedade de interface não pode ser uma propriedade automática de instância, pois isso exigiria a declaração de campos de instância ocultos implícitos. Nota final
O tipo de propriedade de interface deve ser seguro para a saída se houver um acessor get e deve ser seguro para entrada se houver um acessor definido.
Uma declaração de método de interface que tem um corpo de bloco ou corpo de expressão como um method_body é
virtual; ovirtualmodificador não é necessário, mas é permitido.Uma instância property_declaration que não tem implementação é
abstract; oabstractmodificador não é necessário, mas é permitido. Nunca é considerada uma propriedade implementada automaticamente (§15.7.4).
19.4.5 Eventos da interface
Esta cláusula aumenta a descrição de eventos em classes §15.8 para eventos declarados em interfaces.
Os eventos de interface são declarados usando event_declarations (§15.8.1), com as seguintes regras adicionais:
-
event_modifier não inclui
override. - Uma interface derivada pode implementar um evento de interface abstrato declarado em uma interface base (§15.8.5).
- É um erro em tempo de compilação para variable_declarators em uma instância event_declaration para conter qualquer variable_initializers.
- Um evento de instância com os
virtualmodificadores ousealeddeve declarar acessadores. Nunca é considerado um evento semelhante a um campo implementado automaticamente (§15.8.2). - Um evento de instância com o
abstractmodificador não deve declarar acessadores. - O tipo de evento de interface deve ser seguro para entradas.
19.4.6 Indexadores de interface
Esta cláusula aumenta a descrição dos indexadores nas classes §15.9 para indexadores declarados em interfaces.
Os indexadores de interface são declarados usando indexer_declarations (§15.9), com as seguintes regras adicionais:
indexer_modifier não inclui
override.Um indexer_declaration que tem um corpo de expressão ou contém um acessor com um corpo de bloco ou corpo de expressão é
virtual; ovirtualmodificador não é necessário, mas é permitido.Um indexer_declaration cujos corpos acessadores são ponto-e-vírgula (
;) éabstract; oabstractmodificador não é necessário, mas é permitido.Todos os tipos de parâmetros de um indexador de interface devem ser seguros para entradas (§19.2.3.2).
Quaisquer tipos de parâmetros de saída ou de referência devem também ser seguros para a produção.
Nota: Os parâmetros de saída devem ser seguros para entrada devido a restrições comuns de implementação. Nota final
O tipo de indexador de interface deve ser seguro para saída se houver um acessor get e deve ser seguro para entrada se houver um acessor de set.
19.4.7 Operadores de interface
Esta cláusula aumenta a descrição dos membros operator_declaration nas classes §15.10 para operadores declarados em interfaces.
Um operator_declaration numa interface é a implementação (§19.1).
É um erro em tempo de compilação para uma interface declarar um operador de conversão, igualdade ou desigualdade.
19.4.8 Construtores estáticos de interface
Esta cláusula aumenta a descrição de construtores estáticos em classes §15.12 para construtores estáticos declarados em interfaces.
O construtor estático para uma interface fechada (§8.4.3) é executado no máximo uma vez em um determinado domínio de aplicativo. A execução de um construtor estático é acionada pela primeira das seguintes ações a ocorrer dentro de um domínio de aplicativo:
- Qualquer um dos membros estáticos da interface são referenciados.
- Antes de o
Mainmétodo ser chamado para uma interface contendo o método (Main) em que a execução começa. - Essa interface fornece uma implementação para um membro, e essa implementação é acessada como a implementação mais específica (§19.4.10) para esse membro.
Nota: No caso em que nenhuma das ações anteriores ocorre, o construtor estático para uma interface pode não ser executado para um programa onde instâncias de tipos que implementam a interface são criadas e usadas. Nota final
Para inicializar um novo tipo de interface fechada, primeiro é criado um novo conjunto de campos estáticos para esse tipo fechado específico. Cada um dos campos estáticos é inicializado com seu valor padrão. Em seguida, os inicializadores de campo estático são executados para esses campos estáticos. Finalmente, o construtor estático é executado.
Nota: Ver §19.4.2 para um exemplo da utilização de vários tipos de membros estáticos (incluindo um método Main) declarados numa interface. Nota final
19.4.9 Tipos aninhados de interface
Esta cláusula aumenta a descrição de tipos aninhados em classes §15.3.9 para tipos aninhados declarados em interfaces.
É um erro declarar um tipo de classe, tipo struct ou tipo enum dentro do escopo de um parâmetro de tipo que foi declarado com um variance_annotation (§19.2.3.1).
Exemplo: A declaração abaixo
Cé um erro.interface IOuter<out T> { class C { } // error: class declaration within scope of variant type parameter 'T' }Exemplo final
19.4.10 Aplicação mais específica
Cada classe e struct deve ter uma implementação mais específica para cada membro virtual declarado em todas as interfaces implementadas por esse tipo entre as implementações que aparecem no tipo ou suas interfaces diretas e indiretas. A implementação mais específica é uma implementação única que é mais específica do que qualquer outra implementação.
Nota: A regra de implementação mais específica garante que uma ambiguidade decorrente da herança da interface diamante seja resolvida explicitamente pelo programador no ponto em que o conflito ocorre. Nota final
Para um tipo T que é um struct ou uma classe que implementa interfaces I2 e I3, onde I2 e I3 ambos derivam direta ou indiretamente da interface I que declara um membro M, a implementação mais específica de M é:
- Se
Tdeclarar uma implementação deI.M, essa implementação é a implementação mais específica. - Caso contrário, se
Tfor uma classe e uma classe base direta ou indireta declarar uma implementação deI.M, a classe base mais derivada deTé a implementação mais específica. - Caso contrário, se
I2eI3são interfaces implementadas porTeI3deriva diretaI2ou indiretamente,I3.Mé uma implementação mais específica do queI2.M. - Caso contrário, nem
I2.MI3.Msão mais específicos e ocorre um erro.
Exemplo:
interface IA { void M() { Console.WriteLine("IA.M"); } } interface IB : IA { void IA.M() { Console.WriteLine("IB.M"); } } interface IC: IA { void IA.M() { Console.WriteLine("IC.M"); } } abstract class C: IB, IC { } // error: no most specific implementation for 'IA.M' abstract class D: IA, IB, IC // OK { public abstract void M(); }A regra de implementação mais específica garante que um conflito (ou seja, uma ambiguidade decorrente da herança de diamantes) seja resolvido explicitamente pelo programador no ponto em que o conflito surge. Exemplo final
19.4.11 Acesso de membros da interface
Os membros da interface são acessados por meio de expressões de acesso de membro (§12.8.7) e acesso de indexador (§12.8.12.4) do formulário I.M e I[A], onde I é um tipo de interface, M é uma constante, campo, método, propriedade ou evento desse tipo de interface e A é uma lista de argumentos de indexador.
Em uma classe D, com classe Bbase direta ou indireta , onde B direta ou indiretamente implementa interface I e I define um método M(), a expressão base.M() é válida apenas se base.M() estáticamente (§12.3) se liga a uma implementação de em um tipo de M() classe.
Para interfaces que são estritamente de herança única (cada interface na cadeia de herança tem exatamente zero ou uma interface base direta), os efeitos das regras de pesquisa de membro (§12.5), invocação de método (§12.8.10.2) e acesso ao indexador (§12.8.12.4) são exatamente os mesmos que para classes e estruturas: Mais membros derivados ocultam menos membros derivados com o mesmo nome ou assinatura. No entanto, para interfaces de herança múltipla, ambiguidades podem ocorrer quando duas ou mais interfaces base não relacionadas declaram membros com o mesmo nome ou assinatura. Esta subcláusula apresenta vários exemplos, alguns dos quais conduzem a ambiguidades e outros não. Em todos os casos, moldes explícitos podem ser usados para resolver as ambiguidades.
Exemplo: No código seguinte
interface IList { int Count { get; set; } } interface ICounter { int Count { get; set; } } interface IListCounter : IList, ICounter {} class C { void Test(IListCounter x) { x.Count = 1; // Error ((IList)x).Count = 1; // Ok, invokes IList.Count.set ((ICounter)x).Count = 1; // Ok, invokes ICounter.Count } }A primeira instrução causa um erro em tempo de compilação devido à ambiguidade na pesquisa de membros (§12.5) de
CountemIListCounter. Como ilustrado pelo exemplo, a ambiguidade é resolvida convertendoxpara o tipo de interface base apropriado. Essas conversões não têm custos de tempo de execução — consistem apenas em tratar a instância como um tipo menos derivado em tempo de compilação.Exemplo final
Exemplo: No código seguinte
interface IInteger { void Add(int i); } interface IDouble { void Add(double d); } interface INumber : IInteger, IDouble {} class C { void Test(INumber n) { n.Add(1); // Invokes IInteger.Add n.Add(1.0); // Only IDouble.Add is applicable ((IInteger)n).Add(1); // Only IInteger.Add is a candidate ((IDouble)n).Add(1); // Only IDouble.Add is a candidate } }A invocação
n.Add(1)selecionaIInteger.Addaplicando as regras de resolução de sobrecarga do §12.6.4. Da mesma forma, a invocaçãon.Add(1.0)selecionaIDouble.Add. Quando moldes explícitos são inseridos, há apenas um método candidato e, portanto, nenhuma ambiguidade.Exemplo final
Exemplo: No código seguinte
interface IBase { void F(int i); } interface ILeft : IBase { new void F(int i); } interface IRight : IBase { void G(); } interface IDerived : ILeft, IRight {} class A { void Test(IDerived d) { d.F(1); // Invokes ILeft.F ((IBase)d).F(1); // Invokes IBase.F ((ILeft)d).F(1); // Invokes ILeft.F ((IRight)d).F(1); // Invokes IBase.F } }o membro
IBase.Fé escondido peloILeft.F. A invocaçãod.F(1)seleciona assimILeft.F, mesmo queIBase.Fpareça não estar oculto no caminho de acesso que passa porIRight.A regra intuitiva para se esconder em interfaces de herança múltipla é simplesmente esta: se um membro estiver oculto em qualquer caminho de acesso, ele estará oculto em todos os caminhos de acesso. Porque o caminho de acesso de
IDerivedaILeftaIBaseescondeIBase.F, o membro também está oculto no caminho de acesso deIDerivedaIRightaIBase.Exemplo final
19.5 Nomes de membros qualificados da interface
Um membro da interface às vezes é referido por seu nome de membro qualificado da interface. O nome qualificado de um membro da interface consiste no nome da interface na qual o membro é declarado, seguido por um ponto, seguido pelo nome do membro. O nome qualificado de um membro faz referência à interface na qual o membro é declarado.
Exemplo: Dadas as declarações
interface IControl { void Paint(); } interface ITextBox : IControl { void SetText(string text); }o nome qualificado de
PaintéIControl.Painte o nome qualificado de SetText éITextBox.SetText. No exemplo acima, não é possível referir-se aPaintcomoITextBox.Paint.Exemplo final
Quando uma interface faz parte de um namespace, um nome de membro qualificado da interface pode incluir o nome do namespace.
Exemplo:
namespace GraphicsLib { interface IPolygon { void CalculateArea(); } }Dentro do
GraphicsLibnamespace, ambosIPolygon.CalculateAreaeGraphicsLib.IPolygon.CalculateAreasão nomes de membros qualificados da interface para oCalculateAreamétodo.Exemplo final
19.6 Implementações de interface
19.6.1 Generalidades
As interfaces podem ser implementadas por classes e structs. Para indicar que uma classe ou struct implementa diretamente uma interface, a interface é incluída na lista de classes base da classe ou struct.
Uma classe ou struct C que implementa uma interface I deve fornecer ou herdar uma implementação para cada membro declarado que IC pode acessar. Os membros públicos de I podem ser definidos em membros públicos de C. Os membros não públicos declarados em I que são acessíveis podem ser definidos usando CC a implementação de interface explícita (§19.6.2).
Um membro em um tipo derivado que satisfaz o mapeamento de interface (§19.6.5), mas não implementa o membro da interface base correspondente, introduz um novo membro. Isso ocorre quando a implementação explícita da interface é necessária para definir o membro da interface.
Exemplo:
interface ICloneable { object Clone(); } interface IComparable { int CompareTo(object other); } class ListEntry : ICloneable, IComparable { public object Clone() {...} public int CompareTo(object other) {...} }Exemplo final
Uma classe ou struct que implementa diretamente uma interface também implementa implicitamente todas as interfaces base da interface. Isso é verdadeiro mesmo se a classe ou struct não listar explicitamente todas as interfaces base na lista de classes base.
Exemplo:
interface IControl { void Paint(); } interface ITextBox : IControl { void SetText(string text); } class TextBox : ITextBox { public void Paint() {...} public void SetText(string text) {...} }Aqui, a classe
TextBoximplementa tantoIControlcomoITextBox.Exemplo final
Quando uma classe C implementa diretamente uma interface, todas as classes derivadas de C também implementam a interface implicitamente.
As interfaces de base especificadas numa declaração de classe podem ser construídas em tipos de interface (§8.4, §19.2).
Exemplo: O código a seguir ilustra como uma classe pode implementar tipos de interface construídos:
class C<U, V> {} interface I1<V> {} class D : C<string, int>, I1<string> {} class E<T> : C<int, T>, I1<T> {}Exemplo final
As interfaces de base de uma declaração de classe genérica devem satisfazer a regra de unicidade descrita no ponto 19.6.3.
19.6.2 Implementações explícitas de membros da interface
Para fins de implementação de interfaces, uma classe, struct ou interface pode declarar implementações explícitas de membros da interface. Uma implementação explícita de membro da interface é um método, propriedade, evento ou declaração de indexador que faz referência a um nome de membro qualificado da interface. Uma classe ou struct que implementa um membro não público em uma interface base deve declarar uma implementação explícita de membro da interface. Uma interface que implementa um membro em uma interface base deve declarar uma implementação explícita de membro da interface.
Um membro de interface derivado que satisfaz o mapeamento de interface (§19.6.5) oculta o membro da interface base (§7.7.2). O compilador deve emitir um aviso, a menos que o new modificador esteja presente.
Exemplo:
interface IList<T> { T[] GetElements(); } interface IDictionary<K, V> { V this[K key] { get; } void Add(K key, V value); } class List<T> : IList<T>, IDictionary<int, T> { public T[] GetElements() {...} T IDictionary<int, T>.this[int index] {...} void IDictionary<int, T>.Add(int index, T value) {...} }Aqui
IDictionary<int,T>.thiseIDictionary<int,T>.Addsão implementações explícitas de membros da interface.Exemplo final
Exemplo: Em alguns casos, o nome de um membro da interface pode não ser apropriado para a classe de implementação, caso em que o membro da interface pode ser implementado usando a implementação explícita do membro da interface. Uma classe que implementa uma abstração de arquivo, por exemplo, provavelmente implementaria uma função membro que tem o efeito de liberar o recurso de arquivo e, também, implementaria o método da interface
Closeusando a implementação explícita de membros da interfaceDispose.interface IDisposable { void Dispose(); } class MyFile : IDisposable { void IDisposable.Dispose() => Close(); public void Close() { // Do what's necessary to close the file System.GC.SuppressFinalize(this); } }Exemplo final
Não é possível acessar uma implementação explícita de membro da interface por meio de seu nome de membro qualificado da interface em uma chamada de método, acesso à propriedade, acesso a eventos ou acesso ao indexador. Uma implementação explícita de membro da instância de interface só pode ser acessada por meio de uma instância de interface e, nesse caso, é referenciada simplesmente por seu nome de membro. Uma implementação explícita de membro estático da interface só pode ser acessada através do nome da interface.
É um erro em tempo de compilação para uma implementação explícita de membro da interface incluir quaisquer modificadores (§15.6) diferentes de extern ou async.
Uma implementação de método de interface explícita herda quaisquer restrições de parâmetro de tipo da interface.
Uma type_parameter_constraints_clause sobre uma implementação de método de interface explícita só pode consistir em class ou structprimary_constraints aplicados a type_parameters que são conhecidos, de acordo com as restrições herdadas, como sendo tipos de referência ou de valor, respectivamente. Qualquer tipo de formulário T? na assinatura da implementação do método de interface explícito, onde T é um parâmetro type, é interpretado da seguinte forma:
- Se uma
classrestrição for adicionada para o parâmetro de tipoT, entãoT?é um tipo de referência anulável; caso contrário - Se não houver nenhuma restrição adicionada, ou uma restrição
structfor adicionada, para o parâmetro de tipoT, entãoT?é um tipo de valor anulável.
Exemplo: O seguinte demonstra como as regras funcionam quando os parâmetros de tipo estão envolvidos:
#nullable enable interface I { void Foo<T>(T? value) where T : class; void Foo<T>(T? value) where T : struct; } class C : I { void I.Foo<T>(T? value) where T : class { } void I.Foo<T>(T? value) where T : struct { } }Sem a restrição do parâmetro
where T : class, o método base com um parâmetro de tipo de referência não pode ser substituído. Exemplo final
Nota: As implementações explícitas de membros da interface têm características de acessibilidade diferentes dos outros membros. Como as implementações explícitas de membro da interface nunca são acessíveis por meio de um nome de membro de interface qualificado em uma invocação de método ou um acesso de propriedade, elas são, de certa forma, privadas. No entanto, uma vez que podem ser acedidos através da interface, são, de certa forma, também tão públicos como a interface em que são declarados. As implementações explícitas de membros da interface servem a dois propósitos principais:
- Como as implementações explícitas de membro da interface não são acessíveis por meio de instâncias de classe ou struct, elas permitem que as implementações de interface sejam excluídas da interface pública de uma classe ou struct. Isso é particularmente útil quando uma classe ou struct implementa uma interface interna que não é de interesse para um consumidor dessa classe ou struct.
- Implementações explícitas de membros da interface permitem a desambiguação de membros da interface com a mesma assinatura. Sem implementações explícitas de membros da interface, seria impossível para uma classe, struct ou interface ter implementações diferentes de membros da interface com a mesma assinatura e tipo de retorno, como seria impossível para uma classe, struct ou interface ter qualquer implementação de membros da interface com a mesma assinatura, mas com diferentes tipos de retorno.
Nota final
Para que uma implementação explícita de membro da interface seja válida, a classe, struct ou interface deve nomear uma interface em sua classe base ou lista de interface base que contenha um membro cujo nome de membro de interface qualificado, tipo, número de parâmetros de tipo e tipos de parâmetros correspondam exatamente aos da implementação explícita de membro da interface. Se um membro de função de interface tiver um array de parâmetros, o parâmetro correspondente de uma implementação associada de membro de interface explícita pode, mas não é necessário, ter o modificador params. Se o membro da função de interface não tiver uma matriz de parâmetros, uma implementação de membro de interface explícita associada não deve ter uma matriz de parâmetros.
Exemplo: Assim, na seguinte classe
class Shape : ICloneable { object ICloneable.Clone() {...} int IComparable.CompareTo(object other) {...} // invalid }A declaração de
IComparable.CompareToresulta em um erro em tempo de compilação porqueIComparablenão está listada na lista de classes base deShapee não é uma interface base deICloneable. Do mesmo modo, nas declaraçõesclass Shape : ICloneable { object ICloneable.Clone() {...} } class Ellipse : Shape { object ICloneable.Clone() {...} // invalid }A declaração de
ICloneable.CloneemEllipseresulta em um erro durante a compilação porqueICloneablenão está explicitamente listada na lista de classes base deEllipse.Exemplo final
O nome de membro qualificado de uma implementação explícita de membro da interface deve fazer referência à interface na qual o membro foi declarado.
Exemplo: Assim, nas declarações
interface IControl { void Paint(); } interface ITextBox : IControl { void SetText(string text); } class TextBox : ITextBox { void IControl.Paint() {...} void ITextBox.SetText(string text) {...} }a implementação explícita do membro da interface do Paint deve ser escrita como
IControl.Paint, nãoITextBox.Paint.Exemplo final
19.6.3 Singularidade das interfaces implementadas
As interfaces implementadas por uma declaração genérica de tipo devem permanecer únicas para todos os tipos construídos possíveis. Sem esta regra, seria impossível determinar o método correto para chamar certos tipos construídos.
Exemplo: Suponha que uma declaração de classe genérica tenha permissão para ser escrita da seguinte maneira:
interface I<T> { void F(); } class X<U ,V> : I<U>, I<V> // Error: I<U> and I<V> conflict { void I<U>.F() {...} void I<V>.F() {...} }Se isso fosse permitido, seria impossível determinar qual código executar no seguinte caso:
I<int> x = new X<int, int>(); x.F();Exemplo final
Para determinar se a lista de interfaces de uma declaração de tipo genérica é válida, as seguintes etapas são executadas:
- Seja
La lista de interfaces especificadas diretamente em uma classe genérica, struct ou declaraçãoCde interface. - Adicione a
Lqualquer interface base das interfaces já emL. - Remova todas as duplicatas do
L. - Se qualquer possível tipo construído criado a partir de
C, após os argumentos de tipo serem substituídos emL, fazer com que duas interfaces emLsejam idênticas, então a declaração deCé inválida. As declarações de restrição não são consideradas ao determinar todos os tipos construídos possíveis.
Nota: Na declaração de classe acima
X, a lista de interfacesLconsiste eml<U>eI<V>. A declaração é inválida porque qualquer tipo construído comUeVsendo o mesmo tipo faria com que essas duas interfaces fossem tipos idênticos. Nota final
É possível que interfaces especificadas em diferentes níveis de herança unifiquem:
interface I<T>
{
void F();
}
class Base<U> : I<U>
{
void I<U>.F() {...}
}
class Derived<U, V> : Base<U>, I<V> // Ok
{
void I<V>.F() {...}
}
Este código é válido ainda que Derived<U,V> implemente tanto I<U> quanto I<V>. O código
I<int> x = new Derived<int, int>();
x.F();
invoca o método em Derived, uma vez que Derived<int,int>' efetivamente reimplementa I<int> (§19.6.7).
19.6.4 Aplicação de métodos genéricos
Quando um método genérico implementa implicitamente um método de interface, as restrições dadas para cada parâmetro de tipo de método devem ser equivalentes em ambas as declarações (depois de quaisquer parâmetros de tipo de interface serem substituídos pelos argumentos de tipo adequados), em que os parâmetros de tipo de método são identificados por posições ordinais, da esquerda para a direita.
Exemplo: No código seguinte:
interface I<X, Y, Z> { void F<T>(T t) where T : X; void G<T>(T t) where T : Y; void H<T>(T t) where T : Z; } class C : I<object, C, string> { public void F<T>(T t) {...} // Ok public void G<T>(T t) where T : C {...} // Ok public void H<T>(T t) where T : string {...} // Error }o método
C.F<T>implementaI<object,C,string>.F<T>implicitamente . Neste caso, não é necessário (nem permitido) especificar a restriçãoC.F<T>,T: objectuma vez queobjecté uma restrição implícita em todos os parâmetros de tipo. O métodoC.G<T>implementa implicitamente oI<object,C,string>.G<T>porque as restrições correspondem às da interface, depois de os parâmetros de tipo da interface serem substituídos pelos argumentos de tipo correspondentes. A restrição para o métodoC.H<T>é um erro porque os tipos selados (stringneste caso) não podem ser usados como restrições. Omitir a restrição também seria um erro, uma vez que as restrições de implementações de método de interface implícitas são necessárias para corresponder. Assim, é impossível implementarI<object,C,string>.H<T>implicitamente . Este método de interface só pode ser implementado usando uma implementação explícita de membro da interface:class C : I<object, C, string> { ... public void H<U>(U u) where U : class {...} void I<object, C, string>.H<T>(T t) { string s = t; // Ok H<T>(t); } }Nesse caso, a implementação explícita do membro da interface invoca um método público com restrições estritamente mais fracas. A atribuição de t a s é válida, uma vez que
Therda uma restrição deT: string, mesmo que essa restrição não seja expressável no código-fonte. Exemplo final
Nota: Quando um método genérico implementa explicitamente um método de interface, não são permitidas restrições no método de implementação (§15.7.1, §19.6.2). Nota final
19.6.5 Mapeamento de interface
Uma classe ou struct deve fornecer implementações de todos os membros abstratos das interfaces listados na lista de classes base da classe ou struct. O processo de localização de implementações de membros da interface em uma classe ou struct de implementação é conhecido como mapeamento de interface.
O mapeamento de interface para uma classe ou struct C localiza uma implementação para cada membro de cada interface especificada na lista de classes base de C. A implementação de um membro I.Mde interface particular, onde I é a interface na qual o membro M é declarado, é determinada examinando cada classe, interface ou struct S, começando com C e repetindo para cada classe base sucessiva e interface implementada de C, até que uma correspondência seja localizada:
- Se
Scontiver uma declaração de uma implementação explícita de membro da interface que corresponda aIeM, então esse membro é a implementação deI.M. - Caso contrário, se
Scontiver uma declaração de um membro público não estático que corresponda aoM, então esse membro será a implementação doI.M. Se mais de um membro coincidir, não está especificado qual membro é a implementação doI.M. Esta situação só pode ocorrer seSfor um tipo construído onde os dois membros declarados no tipo genérico têm assinaturas diferentes, mas os argumentos de tipo tornam suas assinaturas idênticas.
Um erro em tempo de compilação ocorre se as implementações não puderem ser localizadas para todos os membros de todas as interfaces especificadas na lista de classes base de C. Os membros de uma interface incluem os membros que são herdados das interfaces base.
Considera-se que os membros de um tipo de interface construído têm quaisquer parâmetros de tipo substituídos pelos argumentos de tipo correspondentes, conforme especificado no §15.3.3.
Exemplo: Por exemplo, dada a declaração de interface genérica:
interface I<T> { T F(int x, T[,] y); T this[int y] { get; } }A interface
I<string[]>construída tem os membros:string[] F(int x, string[,][] y); string[] this[int y] { get; }Exemplo final
Para fins de mapeamento de interface, um membro A de classe, interface ou struct corresponde a um membro B da interface quando:
-
AeBsão métodos, e as listas de nomes, tipos e parâmetros deAeBsão idênticas. -
AeBsão propriedades, o nome e o tipo de eAsão idênticos, eBtem os mesmos acessadores queA(Btem permissão para ter acessadores adicionais se não for uma implementação explícita de membro daAinterface). -
AeBsão eventos, e o nome e o tipo deAeBsão idênticos. -
AeBsão indexadores, o tipo e as listas de parâmetros de eAsão idênticos, eBtem os mesmos acessadores queA(Btem permissão para ter acessadores adicionais se não for uma implementação explícita de membro daAinterface).
Implicações notáveis do algoritmo de mapeamento de interface são:
- As implementações explícitas de membros da interface têm precedência sobre outros membros na mesma classe ou estrutura ao determinar o membro da classe ou estrutura que implementa um membro da interface.
- Nem membros não-públicos nem estáticos participam do mapeamento de interface.
Exemplo: No código seguinte
interface ICloneable { object Clone(); } class C : ICloneable { object ICloneable.Clone() {...} public object Clone() {...} }O membro
ICloneable.ClonedeCtorna-se a implementação deCloneemICloneableporque implementações explícitas de membros da interface têm precedência sobre outros membros.Exemplo final
Se uma classe ou struct implementa duas ou mais interfaces contendo um membro com o mesmo nome, tipo e tipos de parâmetro, é possível mapear cada um desses membros de interface para um único membro de classe ou struct.
Exemplo:
interface IControl { void Paint(); } interface IForm { void Paint(); } class Page : IControl, IForm { public void Paint() {...} }Aqui, os
Paintmétodos de ambosIControleIFormsão mapeados para oPaintmétodo emPage. É claro que também é possível ter implementações de membros de interface explícitos separados para os dois métodos.Exemplo final
Se uma classe ou struct implementa uma interface que contém membros ocultos, então alguns membros podem precisar ser implementados por meio de implementações explícitas de membros da interface.
Exemplo:
interface IBase { int P { get; } } interface IDerived : IBase { new int P(); }Uma implementação desta interface exigiria pelo menos uma implementação explícita de membro da interface e assumiria uma das seguintes formas
class C1 : IDerived { int IBase.P { get; } int IDerived.P() {...} } class C2 : IDerived { public int P { get; } int IDerived.P() {...} } class C3 : IDerived { int IBase.P { get; } public int P() {...} }Exemplo final
Quando uma classe implementa várias interfaces que têm a mesma interface base, pode haver apenas uma implementação da interface base.
Exemplo: No código seguinte
interface IControl { void Paint(); } interface ITextBox : IControl { void SetText(string text); } interface IListBox : IControl { void SetItems(string[] items); } class ComboBox : IControl, ITextBox, IListBox { void IControl.Paint() {...} void ITextBox.SetText(string text) {...} void IListBox.SetItems(string[] items) {...} }Não é possível ter implementações separadas para o
IControlnomeado na lista de classes base, oIControlherdado porITextBoxe oIControlherdado porIListBox. Na verdade, não há noção de uma identidade separada para essas interfaces. Em vez disso, as implementações deITextBoxeIListBoxcompartilham a mesma implementação deIControl, eComboBoxé simplesmente considerado para implementar três interfaces,IControl,ITextBox, eIListBox.Exemplo final
Os membros de uma classe base participam do mapeamento de interface.
Exemplo: No código seguinte
interface Interface1 { void F(); } class Class1 { public void F() {} public void G() {} } class Class2 : Class1, Interface1 { public new void G() {} }O método
FemClass1é usado naClass2'simplementação deInterface1.Exemplo final
19.6.6 Herança da implementação da interface
Uma classe herda todas as implementações de interface fornecidas por suas classes base.
Sem reimplementar explicitamente uma interface, uma classe derivada não pode, de forma alguma, alterar os mapeamentos de interface que herda de suas classes base.
Exemplo: Nas declarações
interface IControl { void Paint(); } class Control : IControl { public void Paint() {...} } class TextBox : Control { public new void Paint() {...} }O método
PaintemTextBoxoculta o métodoPaintemControl, mas não altera o mapeamento deControl.PaintparaIControl.Paint. As chamadas para instâncias de classe e instâncias de interfacePaintterão os seguintes efeitos.Control c = new Control(); TextBox t = new TextBox(); IControl ic = c; IControl it = t; c.Paint(); // invokes Control.Paint(); t.Paint(); // invokes TextBox.Paint(); ic.Paint(); // invokes Control.Paint(); it.Paint(); // invokes Control.Paint();Exemplo final
No entanto, quando um método de interface é mapeado em um método virtual em uma classe, é possível que as classes derivadas substituam o método virtual e alterem a implementação da interface.
Exemplo: Reescrever as declarações acima para
interface IControl { void Paint(); } class Control : IControl { public virtual void Paint() {...} } class TextBox : Control { public override void Paint() {...} }Os seguintes efeitos serão agora observados
Control c = new Control(); TextBox t = new TextBox(); IControl ic = c; IControl it = t; c.Paint(); // invokes Control.Paint(); t.Paint(); // invokes TextBox.Paint(); ic.Paint(); // invokes Control.Paint(); it.Paint(); // invokes TextBox.Paint();Exemplo final
Como as implementações explícitas de membros da interface não podem ser declaradas virtuais, não é possível substituir uma implementação explícita de membro da interface. No entanto, é perfeitamente válido para uma implementação de membro de interface explícita chamar outro método, e esse outro método pode ser declarado virtual para permitir que as classes derivadas o substituam.
Exemplo:
interface IControl { void Paint(); } class Control : IControl { void IControl.Paint() { PaintControl(); } protected virtual void PaintControl() {...} } class TextBox : Control { protected override void PaintControl() {...} }Aqui, as classes derivadas de
Controlpodem especializar a implementação deIControl.Paintsubstituindo oPaintControlmétodo.Exemplo final
19.6.7 Reimplementação da interface
Uma classe que herda uma implementação de interface tem permissão para reimplementar a interface incluindo-a na lista de classes base.
Uma reimplementação de uma interface segue exatamente as mesmas regras de mapeamento de interface que uma implementação inicial de uma interface. Assim, o mapeamento de interface herdado não tem qualquer efeito sobre o mapeamento de interface estabelecido para a re-implementação da interface.
Exemplo: Nas declarações
interface IControl { void Paint(); } class Control : IControl { void IControl.Paint() {...} } class MyControl : Control, IControl { public void Paint() {} }O facto de
ControlmapearIControl.PaintemControl.IControl.Paintnão afeta a reimplementação noMyControl, que mapeiaIControl.PaintparaMyControl.Paint.Exemplo final
As declarações de membros públicos herdados e as declarações de membros de interface explícitos herdados participam no processo de mapeamento de interface para interfaces reimplementadas.
Exemplo:
interface IMethods { void F(); void G(); void H(); void I(); } class Base : IMethods { void IMethods.F() {} void IMethods.G() {} public void H() {} public void I() {} } class Derived : Base, IMethods { public void F() {} void IMethods.H() {} }Aqui, a implementação de
IMethodsemDerivedmapeia os métodos de interface emDerived.F,Base.IMethods.G,Derived.IMethods.HeBase.I.Exemplo final
Quando uma classe implementa uma interface, ela implicitamente também implementa todas as interfaces base dessa interface. Da mesma forma, uma re-implementação de uma interface também é implicitamente uma re-implementação de todas as interfaces base da interface.
Exemplo:
interface IBase { void F(); } interface IDerived : IBase { void G(); } class C : IDerived { void IBase.F() {...} void IDerived.G() {...} } class D : C, IDerived { public void F() {...} public void G() {...} }Aqui, a re-implementação de
IDerivedtambém re-implementaIBase, mapeandoIBase.FemD.F.Exemplo final
19.6.8 Classes abstratas e interfaces
Como uma classe não abstrata, uma classe abstrata deve fornecer implementações de todos os membros abstratos das interfaces listadas na lista de classes base da classe. No entanto, uma classe abstrata tem permissão para mapear métodos de interface em métodos abstratos.
Exemplo:
interface IMethods { void F(); void G(); } abstract class C : IMethods { public abstract void F(); public abstract void G(); }Aqui, a implementação de
IMethodsmapeiaFeGpara métodos abstratos, que devem ser redefinidos em classes não abstratas que derivam deC.Exemplo final
Implementações explícitas de membros da interface não podem ser abstratas, mas implementações explícitas de membros da interface são naturalmente permitidas para chamar métodos abstratos.
Exemplo:
interface IMethods { void F(); void G(); } abstract class C: IMethods { void IMethods.F() { FF(); } void IMethods.G() { GG(); } protected abstract void FF(); protected abstract void GG(); }Aqui, classes não abstratas que derivam de
Cseriam obrigadas a substituirFFeGG, fornecendo assim a implementação real deIMethods.Exemplo final
ECMA C# draft specification