WaitHandle.WaitAny 方法

定义

等待指定数组中的任一元素收到信号。

重载

WaitAny(WaitHandle[])

等待指定数组中的任一元素收到信号。

WaitAny(WaitHandle[], Int32)

等待指定数组中的任意元素接收信号,同时使用 32 位有符号整数指定时间间隔。

WaitAny(WaitHandle[], TimeSpan)

等待指定数组中的任意元素接收信号,同时使用 TimeSpan 指定时间间隔。

WaitAny(WaitHandle[], Int32, Boolean)

等待指定数组中的任一元素收到信号,使用 32 位带符号整数指定时间间隔并指定是否在等待之前退出同步域。

WaitAny(WaitHandle[], TimeSpan, Boolean)

等待指定数组中的任一元素收到信号,使用 TimeSpan 指定时间间隔并指定是否在等待之前退出同步域。

WaitAny(WaitHandle[])

Source:
WaitHandle.cs
Source:
WaitHandle.cs
Source:
WaitHandle.cs

等待指定数组中的任一元素收到信号。

public:
 static int WaitAny(cli::array <System::Threading::WaitHandle ^> ^ waitHandles);
public static int WaitAny (System.Threading.WaitHandle[] waitHandles);
static member WaitAny : System.Threading.WaitHandle[] -> int
Public Shared Function WaitAny (waitHandles As WaitHandle()) As Integer

参数

waitHandles
WaitHandle[]

一个 WaitHandle 数组,包含当前实例将等待的对象。

返回

满足等待的对象的数组索引。

例外

waitHandles 参数为 null

- 或 -

waitHandles 数组中一个或多个对象为 null

waitHandles 中的对象数大于系统允许的数量。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 1.0 或 1.1。

等待结束,因为线程在未释放互斥的情况下退出。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 2.0 或更高。

waitHandles 数组包含其他应用程序域中 WaitHandle 的透明代理。

示例

下面的代码示例演示如何调用 WaitAny 方法。

using namespace System;
using namespace System::Threading;

public ref class WaitHandleExample
{
    // Define a random number generator for testing.
private:
    static Random^ random = gcnew Random();
public:
    static void DoTask(Object^ state)
    {
        AutoResetEvent^ autoReset = (AutoResetEvent^) state;
        int time = 1000 * random->Next(2, 10);
        Console::WriteLine("Performing a task for {0} milliseconds.", time);
        Thread::Sleep(time);
        autoReset->Set();
    }
};

int main()
{
    // Define an array with two AutoResetEvent WaitHandles.
    array<WaitHandle^>^ handles = gcnew array<WaitHandle^> {
        gcnew AutoResetEvent(false), gcnew AutoResetEvent(false)};

    // Queue up two tasks on two different threads;
    // wait until all tasks are completed.
    DateTime timeInstance = DateTime::Now;
    Console::WriteLine("Main thread is waiting for BOTH tasks to " +
        "complete.");
    ThreadPool::QueueUserWorkItem(
        gcnew WaitCallback(WaitHandleExample::DoTask), handles[0]);
    ThreadPool::QueueUserWorkItem(
        gcnew WaitCallback(WaitHandleExample::DoTask), handles[1]);
    WaitHandle::WaitAll(handles);
    // The time shown below should match the longest task.
    Console::WriteLine("Both tasks are completed (time waited={0})",
        (DateTime::Now - timeInstance).TotalMilliseconds);

    // Queue up two tasks on two different threads;
    // wait until any tasks are completed.
    timeInstance = DateTime::Now;
    Console::WriteLine();
    Console::WriteLine("The main thread is waiting for either task to " +
        "complete.");
    ThreadPool::QueueUserWorkItem(
        gcnew WaitCallback(WaitHandleExample::DoTask), handles[0]);
    ThreadPool::QueueUserWorkItem(
        gcnew WaitCallback(WaitHandleExample::DoTask), handles[1]);
    int index = WaitHandle::WaitAny(handles);
    // The time shown below should match the shortest task.
    Console::WriteLine("Task {0} finished first (time waited={1}).",
        index + 1, (DateTime::Now - timeInstance).TotalMilliseconds);
}

// This code produces the following sample output.
//
// Main thread is waiting for BOTH tasks to complete.
// Performing a task for 7000 milliseconds.
// Performing a task for 4000 milliseconds.
// Both tasks are completed (time waited=7064.8052)

// The main thread is waiting for either task to complete.
// Performing a task for 2000 milliseconds.
// Performing a task for 2000 milliseconds.
// Task 1 finished first (time waited=2000.6528).
using System;
using System.Threading;

public sealed class App
{
    // Define an array with two AutoResetEvent WaitHandles.
    static WaitHandle[] waitHandles = new WaitHandle[]
    {
        new AutoResetEvent(false),
        new AutoResetEvent(false)
    };

    // Define a random number generator for testing.
    static Random r = new Random();

    static void Main()
    {
        // Queue up two tasks on two different threads;
        // wait until all tasks are completed.
        DateTime dt = DateTime.Now;
        Console.WriteLine("Main thread is waiting for BOTH tasks to complete.");
        ThreadPool.QueueUserWorkItem(new WaitCallback(DoTask), waitHandles[0]);
        ThreadPool.QueueUserWorkItem(new WaitCallback(DoTask), waitHandles[1]);
        WaitHandle.WaitAll(waitHandles);
        // The time shown below should match the longest task.
        Console.WriteLine("Both tasks are completed (time waited={0})",
            (DateTime.Now - dt).TotalMilliseconds);

        // Queue up two tasks on two different threads;
        // wait until any task is completed.
        dt = DateTime.Now;
        Console.WriteLine();
        Console.WriteLine("The main thread is waiting for either task to complete.");
        ThreadPool.QueueUserWorkItem(new WaitCallback(DoTask), waitHandles[0]);
        ThreadPool.QueueUserWorkItem(new WaitCallback(DoTask), waitHandles[1]);
        int index = WaitHandle.WaitAny(waitHandles);
        // The time shown below should match the shortest task.
        Console.WriteLine("Task {0} finished first (time waited={1}).",
            index + 1, (DateTime.Now - dt).TotalMilliseconds);
    }

    static void DoTask(Object state)
    {
        AutoResetEvent are = (AutoResetEvent) state;
        int time = 1000 * r.Next(2, 10);
        Console.WriteLine("Performing a task for {0} milliseconds.", time);
        Thread.Sleep(time);
        are.Set();
    }
}

// This code produces output similar to the following:
//
//  Main thread is waiting for BOTH tasks to complete.
//  Performing a task for 7000 milliseconds.
//  Performing a task for 4000 milliseconds.
//  Both tasks are completed (time waited=7064.8052)
//
//  The main thread is waiting for either task to complete.
//  Performing a task for 2000 milliseconds.
//  Performing a task for 2000 milliseconds.
//  Task 1 finished first (time waited=2000.6528).
Imports System.Threading

NotInheritable Public Class App
    ' Define an array with two AutoResetEvent WaitHandles.
    Private Shared waitHandles() As WaitHandle = _
        {New AutoResetEvent(False), New AutoResetEvent(False)}
    
    ' Define a random number generator for testing.
    Private Shared r As New Random()
    
    <MTAThreadAttribute> _
    Public Shared Sub Main() 
        ' Queue two tasks on two different threads; 
        ' wait until all tasks are completed.
        Dim dt As DateTime = DateTime.Now
        Console.WriteLine("Main thread is waiting for BOTH tasks to complete.")
        ThreadPool.QueueUserWorkItem(AddressOf DoTask, waitHandles(0))
        ThreadPool.QueueUserWorkItem(AddressOf DoTask, waitHandles(1))
        WaitHandle.WaitAll(waitHandles)
        ' The time shown below should match the longest task.
        Console.WriteLine("Both tasks are completed (time waited={0})", _
            (DateTime.Now - dt).TotalMilliseconds)
        
        ' Queue up two tasks on two different threads; 
        ' wait until any tasks are completed.
        dt = DateTime.Now
        Console.WriteLine()
        Console.WriteLine("The main thread is waiting for either task to complete.")
        ThreadPool.QueueUserWorkItem(AddressOf DoTask, waitHandles(0))
        ThreadPool.QueueUserWorkItem(AddressOf DoTask, waitHandles(1))
        Dim index As Integer = WaitHandle.WaitAny(waitHandles)
        ' The time shown below should match the shortest task.
        Console.WriteLine("Task {0} finished first (time waited={1}).", _
            index + 1,(DateTime.Now - dt).TotalMilliseconds)
    
    End Sub
    
    Shared Sub DoTask(ByVal state As [Object]) 
        Dim are As AutoResetEvent = CType(state, AutoResetEvent)
        Dim time As Integer = 1000 * r.Next(2, 10)
        Console.WriteLine("Performing a task for {0} milliseconds.", time)
        Thread.Sleep(time)
        are.Set()
    
    End Sub
End Class

' This code produces output similar to the following:
'
'  Main thread is waiting for BOTH tasks to complete.
'  Performing a task for 7000 milliseconds.
'  Performing a task for 4000 milliseconds.
'  Both tasks are completed (time waited=7064.8052)
' 
'  The main thread is waiting for either task to complete.
'  Performing a task for 2000 milliseconds.
'  Performing a task for 2000 milliseconds.
'  Task 1 finished first (time waited=2000.6528).

注解

AbandonedMutexException是 .NET Framework 2.0 版中的新增功能。 在以前的版本中, WaitAny 如果由于互斥被放弃而等待完成,则方法将返回 true 。 放弃的互斥体通常表示存在严重的编码错误。 对于系统范围的互斥,它可能表示应用程序已突然终止 (,例如,使用 Windows 任务管理器) 。 异常包含对调试有用的信息。

仅当等待由于放弃的互斥体而完成时,方法 WaitAny 才会引发 AbandonedMutexException 。 如果 waitHandles 包含的已释放互斥体具有比放弃的互斥体低的索引号,则 WaitAny 该方法将正常完成,并且不会引发异常。

注意

在低于版本 2.0 的.NET Framework版本中,如果线程退出或中止而不显式释放 ,并且Mutex另一个MutexWaitAny线程的数组中的索引为 0 (零) ,则 返回WaitAny的索引为 128 而不是 0。

此方法在发出任何句柄信号时返回。 如果在调用期间发出多个对象的信号,则返回值是信号对象的数组索引,其索引值是所有信号对象的最小索引值。

等待句柄的最大数目为 64;如果当前线程处于 STA 状态,则为 63。

调用此方法重载等效于调用 WaitAny(WaitHandle[], Int32, Boolean) 方法重载并为 指定 -1 (或 Timeout.Infinite) truemillisecondsTimeoutexitContext

适用于

WaitAny(WaitHandle[], Int32)

Source:
WaitHandle.cs
Source:
WaitHandle.cs
Source:
WaitHandle.cs

等待指定数组中的任意元素接收信号,同时使用 32 位有符号整数指定时间间隔。

public:
 static int WaitAny(cli::array <System::Threading::WaitHandle ^> ^ waitHandles, int millisecondsTimeout);
public static int WaitAny (System.Threading.WaitHandle[] waitHandles, int millisecondsTimeout);
static member WaitAny : System.Threading.WaitHandle[] * int -> int
Public Shared Function WaitAny (waitHandles As WaitHandle(), millisecondsTimeout As Integer) As Integer

参数

waitHandles
WaitHandle[]

一个 WaitHandle 数组,包含当前实例将等待的对象。

millisecondsTimeout
Int32

等待的毫秒数,或为 Infinite (-1),表示无限期等待。

返回

满足等待的对象的数组索引;如果没有任何对象满足等待,并且等效于 WaitTimeout 的时间间隔已过,则为 millisecondsTimeout

例外

waitHandles 参数为 null

- 或 -

waitHandles 数组中一个或多个对象为 null

waitHandles 中的对象数大于系统允许的数量。

millisecondsTimeout 是一个非 -1 的负数,而 -1 表示无限期超时。

等待结束,因为线程在未释放互斥的情况下退出。

waitHandles 是一个不含任何元素的数组。

waitHandles 数组包含其他应用程序域中 WaitHandle 的透明代理。

注解

如果 millisecondsTimeout 为零,则 方法不会阻止。 它测试等待句柄的状态并立即返回。

仅当等待由于放弃的互斥体而完成时,方法 WaitAny 才会引发 AbandonedMutexException 。 如果 waitHandles 包含的已释放互斥体具有比放弃的互斥体低的索引号,则 WaitAny 该方法将正常完成,并且不会引发异常。

此方法在等待终止时返回,无论何时发出任何句柄的信号或发生超时。 如果在调用期间发出多个对象的信号,则返回值是信号对象的数组索引,其索引值是所有信号对象的最小索引值。

等待句柄的最大数目为 64;如果当前线程处于 STA 状态,则为 63。

调用此方法重载与调用WaitAny(WaitHandle[], Int32, Boolean)重载和为 exitContext指定 false 相同。

适用于

WaitAny(WaitHandle[], TimeSpan)

Source:
WaitHandle.cs
Source:
WaitHandle.cs
Source:
WaitHandle.cs

等待指定数组中的任意元素接收信号,同时使用 TimeSpan 指定时间间隔。

public:
 static int WaitAny(cli::array <System::Threading::WaitHandle ^> ^ waitHandles, TimeSpan timeout);
public static int WaitAny (System.Threading.WaitHandle[] waitHandles, TimeSpan timeout);
static member WaitAny : System.Threading.WaitHandle[] * TimeSpan -> int
Public Shared Function WaitAny (waitHandles As WaitHandle(), timeout As TimeSpan) As Integer

参数

waitHandles
WaitHandle[]

一个 WaitHandle 数组,包含当前实例将等待的对象。

timeout
TimeSpan

表示等待毫秒数的 TimeSpan,或表示 -1 毫秒(无限期等待)的 TimeSpan

返回

满足等待的对象的数组索引;如果没有任何对象满足等待,并且等效于 WaitTimeout 的时间间隔已过,则为 timeout

例外

waitHandles 参数为 null

- 或 -

waitHandles 数组中一个或多个对象为 null

waitHandles 中的对象数大于系统允许的数量。

timeout 为 -1 毫秒以外的负数,表示无限期超时。

- 或 -

timeout 大于 Int32.MaxValue

等待结束,因为线程在未释放互斥的情况下退出。

waitHandles 是一个不含任何元素的数组。

waitHandles 数组包含其他应用程序域中 WaitHandle 的透明代理。

注解

如果 timeout 为零,则 方法不会阻止。 它测试等待句柄的状态并立即返回。

仅当等待由于放弃的互斥体而完成时,方法 WaitAny 才会引发 AbandonedMutexException 。 如果 waitHandles 包含的已释放互斥体具有比放弃的互斥体低的索引号,则 WaitAny 该方法将正常完成,并且不会引发异常。

此方法在等待终止时返回,无论是发出任何句柄的信号还是发生超时时。 如果在调用期间发出多个对象的信号,则返回值是信号对象的数组索引,其索引值是所有信号对象的最小索引值。

等待句柄的最大数目为 64;如果当前线程处于 STA 状态,则为 63。

timeout 最大值为 Int32.MaxValue

调用此方法重载与调用WaitAny(WaitHandle[], TimeSpan, Boolean)重载和为 exitContext指定 false 相同。

适用于

WaitAny(WaitHandle[], Int32, Boolean)

Source:
WaitHandle.cs
Source:
WaitHandle.cs
Source:
WaitHandle.cs

等待指定数组中的任一元素收到信号,使用 32 位带符号整数指定时间间隔并指定是否在等待之前退出同步域。

public:
 static int WaitAny(cli::array <System::Threading::WaitHandle ^> ^ waitHandles, int millisecondsTimeout, bool exitContext);
public static int WaitAny (System.Threading.WaitHandle[] waitHandles, int millisecondsTimeout, bool exitContext);
static member WaitAny : System.Threading.WaitHandle[] * int * bool -> int
Public Shared Function WaitAny (waitHandles As WaitHandle(), millisecondsTimeout As Integer, exitContext As Boolean) As Integer

参数

waitHandles
WaitHandle[]

一个 WaitHandle 数组,包含当前实例将等待的对象。

millisecondsTimeout
Int32

等待的毫秒数,或为 Infinite (-1),表示无限期等待。

exitContext
Boolean

如果等待之前先退出上下文的同步域(如果在同步上下文中),并在稍后重新获取它,则为 true;否则为 false

返回

满足等待的对象的数组索引;如果没有任何对象满足等待,并且等效于 WaitTimeout 的时间间隔已过,则为 millisecondsTimeout

例外

waitHandles 参数为 null

- 或 -

waitHandles 数组中一个或多个对象为 null

waitHandles 中的对象数大于系统允许的数量。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 1.0 或 1.1。

millisecondsTimeout 是一个非 -1 的负数,而 -1 表示无限期超时。

等待结束,因为线程在未释放互斥的情况下退出。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 2.0 或更高。

waitHandles 数组包含其他应用程序域中 WaitHandle 的透明代理。

示例

下面的代码示例演示如何使用线程池同时搜索多个磁盘上的文件。 出于空间考虑,仅搜索每个磁盘的根目录。

using namespace System;
using namespace System::IO;
using namespace System::Threading;
ref class Search
{
private:

   // Maintain state information to pass to FindCallback.
   ref class State
   {
   public:
      AutoResetEvent^ autoEvent;
      String^ fileName;
      State( AutoResetEvent^ autoEvent, String^ fileName )
         : autoEvent( autoEvent ), fileName( fileName )
      {}

   };


public:
   array<AutoResetEvent^>^autoEvents;
   array<String^>^diskLetters;

   // Search for stateInfo->fileName.
   void FindCallback( Object^ state )
   {
      State^ stateInfo = dynamic_cast<State^>(state);
      
      // Signal if the file is found.
      if ( File::Exists( stateInfo->fileName ) )
      {
         stateInfo->autoEvent->Set();
      }
   }

   Search()
   {
      
      // Retrieve an array of disk letters.
      diskLetters = Environment::GetLogicalDrives();
      autoEvents = gcnew array<AutoResetEvent^>(diskLetters->Length);
      for ( int i = 0; i < diskLetters->Length; i++ )
      {
         autoEvents[ i ] = gcnew AutoResetEvent( false );

      }
   }


   // Search for fileName in the root directory of all disks.
   void FindFile( String^ fileName )
   {
      for ( int i = 0; i < diskLetters->Length; i++ )
      {
         Console::WriteLine(  "Searching for {0} on {1}.", fileName, diskLetters[ i ] );
         ThreadPool::QueueUserWorkItem( gcnew WaitCallback( this, &Search::FindCallback ), gcnew State( autoEvents[ i ],String::Concat( diskLetters[ i ], fileName ) ) );

      }
      
      // Wait for the first instance of the file to be found.
      int index = WaitHandle::WaitAny( autoEvents, 3000, false );
      if ( index == WaitHandle::WaitTimeout )
      {
         Console::WriteLine( "\n{0} not found.", fileName );
      }
      else
      {
         Console::WriteLine( "\n{0} found on {1}.", fileName, diskLetters[ index ] );
      }
   }

};

int main()
{
   Search^ search = gcnew Search;
   search->FindFile( "SomeFile.dat" );
}
using System;
using System.IO;
using System.Threading;

class Test
{
    static void Main()
    {
        Search search = new Search();
        search.FindFile("SomeFile.dat");
    }
}

class Search
{
    // Maintain state information to pass to FindCallback.
    class State
    {
        public AutoResetEvent autoEvent;
        public string         fileName;

        public State(AutoResetEvent autoEvent, string fileName)
        {
            this.autoEvent    = autoEvent;
            this.fileName     = fileName;
        }
    }

    AutoResetEvent[] autoEvents;
    String[] diskLetters;

    public Search()
    {
        // Retrieve an array of disk letters.
        diskLetters = Environment.GetLogicalDrives();

        autoEvents = new AutoResetEvent[diskLetters.Length];
        for(int i = 0; i < diskLetters.Length; i++)
        {
            autoEvents[i] = new AutoResetEvent(false);
        }
    }

    // Search for fileName in the root directory of all disks.
    public void FindFile(string fileName)
    {
        for(int i = 0; i < diskLetters.Length; i++)
        {
            Console.WriteLine("Searching for {0} on {1}.",
                fileName, diskLetters[i]);
            ThreadPool.QueueUserWorkItem(
                new WaitCallback(FindCallback), 
                new State(autoEvents[i], diskLetters[i] + fileName));
        }

        // Wait for the first instance of the file to be found.
        int index = WaitHandle.WaitAny(autoEvents, 3000, false);
        if(index == WaitHandle.WaitTimeout)
        {
            Console.WriteLine("\n{0} not found.", fileName);
        }
        else
        {
            Console.WriteLine("\n{0} found on {1}.", fileName,
                diskLetters[index]);
        }
    }

    // Search for stateInfo.fileName.
    void FindCallback(object state)
    {
        State stateInfo = (State)state;

        // Signal if the file is found.
        if(File.Exists(stateInfo.fileName))
        {
            stateInfo.autoEvent.Set();
        }
    }
}
Imports System.IO
Imports System.Threading

Public Class Test

    <MTAThread> _
    Shared Sub Main()
        Dim search As New Search()
        search.FindFile("SomeFile.dat")
    End Sub    
End Class

Public Class Search

    ' Maintain state information to pass to FindCallback.
    Class State
        Public autoEvent As AutoResetEvent 
        Public fileName As String         

        Sub New(anEvent As AutoResetEvent, fName As String)
            autoEvent = anEvent
            fileName = fName
        End Sub
    End Class

    Dim autoEvents() As AutoResetEvent
    Dim diskLetters() As String

    Sub New()

        ' Retrieve an array of disk letters.
        diskLetters = Environment.GetLogicalDrives()

        autoEvents = New AutoResetEvent(diskLetters.Length - 1) {}
        For i As Integer = 0 To diskLetters.Length - 1
            autoEvents(i) = New AutoResetEvent(False)
        Next i
    End Sub    
    
    ' Search for fileName in the root directory of all disks.
    Sub FindFile(fileName As String)
        For i As Integer = 0 To diskLetters.Length - 1
            Console.WriteLine("Searching for {0} on {1}.", _
                fileName, diskLetters(i))
        
            ThreadPool.QueueUserWorkItem(AddressOf FindCallback, _ 
                New State(autoEvents(i), diskLetters(i) & fileName))
        Next i

        ' Wait for the first instance of the file to be found.
        Dim index As Integer = _
            WaitHandle.WaitAny(autoEvents, 3000, False)
        If index = WaitHandle.WaitTimeout
            Console.WriteLine(vbCrLf & "{0} not found.", fileName)
        Else
            Console.WriteLine(vbCrLf & "{0} found on {1}.", _
                fileName, diskLetters(index))
        End If
    End Sub

    ' Search for stateInfo.fileName.
    Sub FindCallback(state As Object)
        Dim stateInfo As State = DirectCast(state, State)

        ' Signal if the file is found.
        If File.Exists(stateInfo.fileName) Then
            stateInfo.autoEvent.Set()
        End If
    End Sub

End Class

注解

如果 millisecondsTimeout 为零,则 方法不会阻止。 它测试等待句柄的状态并立即返回。

仅当等待由于放弃的互斥体而完成时,方法 WaitAny 才会引发 AbandonedMutexException 。 如果 waitHandles 包含的已释放互斥体具有比放弃的互斥体低的索引号,则 WaitAny 该方法将正常完成,并且不会引发异常。 放弃的互斥体通常表示存在严重的编码错误。 对于系统范围的互斥,它可能表示应用程序已突然终止 (,例如,使用 Windows 任务管理器) 。 异常包含对调试有用的信息。

此方法在等待终止时返回,无论何时发出任何句柄的信号或发生超时。 如果在调用期间发出多个对象的信号,则返回值是信号对象的数组索引,其索引值是所有信号对象的最小索引值。

等待句柄的最大数目为 64;如果当前线程处于 STA 状态,则为 63。

退出上下文

除非 exitContext 从非默认托管上下文中调用此方法,否则 参数不起作用。 如果线程位于对派生自 ContextBoundObject的类实例的调用中,则托管上下文可能是非默认的。 即使当前正在对不是派生自 ContextBoundObject的类(如 ) String执行方法,也可以位于非默认上下文中( ContextBoundObject 如果 位于当前应用程序域的堆栈上)。

当代码在非默认上下文中执行时,将 指定 为 trueexitContext 会使线程退出非默认托管上下文 (即在执行此方法之前转换为默认上下文) 。 对此方法的调用完成后,线程将返回到原始的非默认上下文。

当上下文绑定类具有 属性时, SynchronizationAttribute 退出上下文可能很有用。 在这种情况下,将自动同步对 类成员的所有调用,并且同步域是类的整个代码主体。 如果成员的调用堆栈中的代码调用此方法并为 指定 trueexitContext,则线程将退出同步域,从而允许在调用 对象的任何成员时被阻止的线程继续。 此方法返回时,进行调用的线程必须等待重新进入同步域。

适用于

WaitAny(WaitHandle[], TimeSpan, Boolean)

Source:
WaitHandle.cs
Source:
WaitHandle.cs
Source:
WaitHandle.cs

等待指定数组中的任一元素收到信号,使用 TimeSpan 指定时间间隔并指定是否在等待之前退出同步域。

public:
 static int WaitAny(cli::array <System::Threading::WaitHandle ^> ^ waitHandles, TimeSpan timeout, bool exitContext);
public static int WaitAny (System.Threading.WaitHandle[] waitHandles, TimeSpan timeout, bool exitContext);
static member WaitAny : System.Threading.WaitHandle[] * TimeSpan * bool -> int
Public Shared Function WaitAny (waitHandles As WaitHandle(), timeout As TimeSpan, exitContext As Boolean) As Integer

参数

waitHandles
WaitHandle[]

一个 WaitHandle 数组,包含当前实例将等待的对象。

timeout
TimeSpan

表示等待毫秒数的 TimeSpan,或表示 -1 毫秒(无限期等待)的 TimeSpan

exitContext
Boolean

如果等待之前先退出上下文的同步域(如果在同步上下文中),并在稍后重新获取它,则为 true;否则为 false

返回

满足等待的对象的数组索引;如果没有任何对象满足等待,并且等效于 WaitTimeout 的时间间隔已过,则为 timeout

例外

waitHandles 参数为 null

- 或 -

waitHandles 数组中一个或多个对象为 null

waitHandles 中的对象数大于系统允许的数量。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 1.0 或 1.1。

timeout 为 -1 毫秒以外的负数,表示无限期超时。

- 或 -

timeout 大于 Int32.MaxValue

等待结束,因为线程在未释放互斥的情况下退出。

waitHandles 是不含元素的数组,并且 .NET Framework 的版本为 2.0 或更高。

waitHandles 数组包含其他应用程序域中 WaitHandle 的透明代理。

示例

下面的代码示例演示如何使用线程池同时搜索多个磁盘上的文件。 出于空间考虑,仅搜索每个磁盘的根目录。

using namespace System;
using namespace System::IO;
using namespace System::Threading;
ref class Search
{
private:

   // Maintain state information to pass to FindCallback.
   ref class State
   {
   public:
      AutoResetEvent^ autoEvent;
      String^ fileName;
      State( AutoResetEvent^ autoEvent, String^ fileName )
         : autoEvent( autoEvent ), fileName( fileName )
      {}

   };


public:
   array<AutoResetEvent^>^autoEvents;
   array<String^>^diskLetters;

   // Search for stateInfo->fileName.
   void FindCallback( Object^ state )
   {
      State^ stateInfo = dynamic_cast<State^>(state);
      
      // Signal if the file is found.
      if ( File::Exists( stateInfo->fileName ) )
      {
         stateInfo->autoEvent->Set();
      }
   }

   Search()
   {
      
      // Retrieve an array of disk letters.
      diskLetters = Environment::GetLogicalDrives();
      autoEvents = gcnew array<AutoResetEvent^>(diskLetters->Length);
      for ( int i = 0; i < diskLetters->Length; i++ )
      {
         autoEvents[ i ] = gcnew AutoResetEvent( false );

      }
   }


   // Search for fileName in the root directory of all disks.
   void FindFile( String^ fileName )
   {
      for ( int i = 0; i < diskLetters->Length; i++ )
      {
         Console::WriteLine(  "Searching for {0} on {1}.", fileName, diskLetters[ i ] );
         ThreadPool::QueueUserWorkItem( gcnew WaitCallback( this, &Search::FindCallback ), gcnew State( autoEvents[ i ],String::Concat( diskLetters[ i ], fileName ) ) );

      }
      
      // Wait for the first instance of the file to be found.
      int index = WaitHandle::WaitAny( autoEvents, TimeSpan(0,0,3), false );
      if ( index == WaitHandle::WaitTimeout )
      {
         Console::WriteLine( "\n{0} not found.", fileName );
      }
      else
      {
         Console::WriteLine( "\n{0} found on {1}.", fileName, diskLetters[ index ] );
      }
   }

};

int main()
{
   Search^ search = gcnew Search;
   search->FindFile( "SomeFile.dat" );
}
using System;
using System.IO;
using System.Threading;

class Test
{
    static void Main()
    {
        Search search = new Search();
        search.FindFile("SomeFile.dat");
    }
}

class Search
{
    // Maintain state information to pass to FindCallback.
    class State
    {
        public AutoResetEvent autoEvent;
        public string         fileName;

        public State(AutoResetEvent autoEvent, string fileName)
        {
            this.autoEvent    = autoEvent;
            this.fileName     = fileName;
        }
    }

    AutoResetEvent[] autoEvents;
    String[] diskLetters;

    public Search()
    {
        // Retrieve an array of disk letters.
        diskLetters = Environment.GetLogicalDrives();

        autoEvents = new AutoResetEvent[diskLetters.Length];
        for(int i = 0; i < diskLetters.Length; i++)
        {
            autoEvents[i] = new AutoResetEvent(false);
        }
    }

    // Search for fileName in the root directory of all disks.
    public void FindFile(string fileName)
    {
        for(int i = 0; i < diskLetters.Length; i++)
        {
            Console.WriteLine("Searching for {0} on {1}.",
                fileName, diskLetters[i]);
            ThreadPool.QueueUserWorkItem(
                new WaitCallback(FindCallback), 
                new State(autoEvents[i], diskLetters[i] + fileName));
        }

        // Wait for the first instance of the file to be found.
        int index = WaitHandle.WaitAny(
            autoEvents, new TimeSpan(0, 0, 3), false);
        if(index == WaitHandle.WaitTimeout)
        {
            Console.WriteLine("\n{0} not found.", fileName);
        }
        else
        {
            Console.WriteLine("\n{0} found on {1}.", fileName,
                diskLetters[index]);
        }
    }

    // Search for stateInfo.fileName.
    void FindCallback(object state)
    {
        State stateInfo = (State)state;

        // Signal if the file is found.
        if(File.Exists(stateInfo.fileName))
        {
            stateInfo.autoEvent.Set();
        }
    }
}
Imports System.IO
Imports System.Threading

Public Class Test

    <MTAThread> _
    Shared Sub Main()
        Dim search As New Search()
        search.FindFile("SomeFile.dat")
    End Sub    
End Class

Public Class Search

    ' Maintain state information to pass to FindCallback.
    Class State
        Public autoEvent As AutoResetEvent 
        Public fileName As String         

        Sub New(anEvent As AutoResetEvent, fName As String)
            autoEvent = anEvent
            fileName = fName
        End Sub
    End Class

    Dim autoEvents() As AutoResetEvent
    Dim diskLetters() As String

    Sub New()

        ' Retrieve an array of disk letters.
        diskLetters = Environment.GetLogicalDrives()

        autoEvents = New AutoResetEvent(diskLetters.Length - 1) {}
        For i As Integer = 0 To diskLetters.Length - 1
            autoEvents(i) = New AutoResetEvent(False)
        Next i
    End Sub    
    
    ' Search for fileName in the root directory of all disks.
    Sub FindFile(fileName As String)
        For i As Integer = 0 To diskLetters.Length - 1
            Console.WriteLine("Searching for {0} on {1}.", _
                fileName, diskLetters(i))
        
            ThreadPool.QueueUserWorkItem(AddressOf FindCallback, _ 
                New State(autoEvents(i), diskLetters(i) & fileName))
        Next i

        ' Wait for the first instance of the file to be found.
        Dim index As Integer = WaitHandle.WaitAny( _
            autoEvents, New TimeSpan(0, 0, 3), False)
        If index = WaitHandle.WaitTimeout
            Console.WriteLine(vbCrLf & "{0} not found.", fileName)
        Else
            Console.WriteLine(vbCrLf & "{0} found on {1}.", _
                fileName, diskLetters(index))
        End If
    End Sub

    ' Search for stateInfo.fileName.
    Sub FindCallback(state As Object)
        Dim stateInfo As State = DirectCast(state, State)

        ' Signal if the file is found.
        If File.Exists(stateInfo.fileName) Then
            stateInfo.autoEvent.Set()
        End If
    End Sub

End Class

注解

如果 timeout 为零,则 方法不会阻止。 它测试等待句柄的状态并立即返回。

仅当等待由于放弃的互斥体而完成时,方法 WaitAny 才会引发 AbandonedMutexException 。 如果 waitHandles 包含的已释放互斥体具有比放弃的互斥体低的索引号,则 WaitAny 该方法将正常完成,并且不会引发异常。 放弃的互斥体通常表示存在严重的编码错误。 对于系统范围的互斥,它可能表示应用程序已突然终止 (,例如,使用 Windows 任务管理器) 。 异常包含对调试有用的信息。

此方法在等待终止时返回,无论是发出任何句柄的信号还是发生超时时。 如果在调用期间发出多个对象的信号,则返回值是信号对象的数组索引,其索引值是所有信号对象的最小索引值。

等待句柄的最大数目为 64;如果当前线程处于 STA 状态,则为 63。

timeout 最大值为 Int32.MaxValue

退出上下文

除非 exitContext 从非默认托管上下文中调用此方法,否则 参数不起作用。 如果线程位于对派生自 ContextBoundObject的类实例的调用中,则托管上下文可能是非默认的。 即使当前正在对不是派生自 ContextBoundObject的类(如 ) String执行方法,也可以位于非默认上下文中( ContextBoundObject 如果 位于当前应用程序域的堆栈上)。

当代码在非默认上下文中执行时,将 指定 为 trueexitContext 会使线程退出非默认托管上下文 (即在执行此方法之前转换为默认上下文) 。 对此方法的调用完成后,线程将返回到原始的非默认上下文。

当上下文绑定类具有 属性时, SynchronizationAttribute 退出上下文可能很有用。 在这种情况下,将自动同步对 类成员的所有调用,并且同步域是类的整个代码主体。 如果成员的调用堆栈中的代码调用此方法并为 指定 trueexitContext,则线程将退出同步域,从而允许在调用 对象的任何成员时被阻止的线程继续。 此方法返回时,进行调用的线程必须等待重新进入同步域。

适用于