इसके माध्यम से साझा किया गया


इनवॉइस प्रोसेसिंग प्रीबिल्ट एआई मॉडल

चालान प्रसंस्करण पूर्वनिर्मित AI मॉडल चालान प्रसंस्करण को स्वचालित करने में मदद करने के लिए प्रमुख चालान डेटा निकालता है। चालान प्रसंस्करण मॉडल को चालान आईडी, चालान तिथि, देय राशि आदि जैसे सामान्य चालान तत्वों को पहचानने के लिए अनुकूलित किया गया है।

इनवॉइस मॉडल आपको कस्टम इनवॉइस मॉडल बनाकर डिफ़ॉल्ट व्यवहार को बढ़ाने की अनुमति देता है।

Power Apps में उपयोग करें

Power Appsमें इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल का उपयोग करने का तरीका जानने के लिए, इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल का उपयोग करें पर जाएँ। Power Apps

Power Automate में उपयोग करें

Power Automateमें इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल का उपयोग कैसे करें, यह जानने के लिए Power Automate में इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल का उपयोग करें पर जाएँ।

समर्थित भाषाएँ और फ़ाइलें

निम्नलिखित भाषाएँ समर्थित हैं: अल्बेनियन (अल्बानिया), चेक (चेक गणराज्य), चीनी (सरलीकृत) चीन, चीनी (पारंपरिक) हांगकांग एसएआर, चीनी (पारंपरिक) ताइवान, डेनिश (डेनमार्क), क्रोएशियाई (बोस्निया और हर्जेगोविना), क्रोएशियाई (क्रोएशिया), क्रोएशियाई (सर्बिया), डच (नीदरलैंड), अंग्रेजी (ऑस्ट्रेलिया), अंग्रेजी (कनाडा), अंग्रेजी (भारत), अंग्रेजी (यूनाइटेड किंगडम), अंग्रेजी (संयुक्त राज्य), एस्टोनियाई (एस्टोनिया), फिनिश (फिनलैंड), फ्रेंच (फ्रांस), जर्मन (जर्मनी), हंगेरियन (हंगरी), आइसलैंडिक (आइसलैंड), इतालवी (इटली), जापानी (जापान), कोरियाई (कोरिया), लिथुआनियाई (लिथुआनिया), लातवियाई (लातविया), मलय (मलेशिया), नॉर्वेजियन (नॉर्वे), पोलिश (पोलैंड), पुर्तगाली (पुर्तगाल), रोमानियाई (रोमानिया), स्लोवाक (स्लोवाकिया), स्लोवेनियाई (स्लोवेनिया), सर्बियाई (सर्बिया), स्पेनिश (स्पेन), स्वीडिश (स्वीडन)।

सर्वोत्तम परिणाम पाने के लिए, प्रत्येक चालान में एक स्पष्ट फोटो या स्कैन प्रदान करें।

  • छवि का प्रारूप JPEG, PNG, या PDF होना चाहिए।
  • फ़ाइल का आकार 20 एमबी से अधिक नहीं होना चाहिए.
  • छवि का आयाम 50 x 50 पिक्सेल और 10,000 x 10,000 पिक्सेल के बीच होना चाहिए।
  • पीडीएफ का आकार अधिकतम 17 x 17 इंच होना चाहिए, जो लीगल या A3 पेपर आकार के बराबर या उससे छोटा है।
  • पीडीएफ दस्तावेजों के लिए, केवल पहले 2,000 पृष्ठों पर ही प्रक्रिया की जाती है।

मॉडल आउटपुट

यदि कोई चालान पाया जाता है, तो चालान प्रसंस्करण मॉडल निम्नलिखित जानकारी आउटपुट करता है:

गुण परिभाषा
देय राशि (पाठ) देय राशि चालान पर लिखी गई है।
देय राशि (संख्या) मानकीकृत संख्या प्रारूप में देय राशि। उदाहरण: 1234.98.
देय राशि का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
बिलिंग पता बिलिंग पता.
बिलिंग पते का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
बिलिंग पता प्राप्तकर्ता बिलिंग पता प्राप्तकर्ता.
बिलिंग पते प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
ग्राहक पता ग्राहक का पता.
ग्राहक पता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
ग्राहक पता प्राप्तकर्ता ग्राहक पता प्राप्तकर्ता.
ग्राहक पता प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
ग्राहक ID ग्राहक आईडी।
ग्राहक ID का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
ग्राहक का नाम ग्राहक का नाम.
ग्राहक नाम का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
ग्राहक कर ID ग्राहक से संबद्ध करदाता संख्या.
ग्राहक कर ID का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
देय तिथि (पाठ) देय तिथि, जैसा कि चालान पर लिखा है।
देय तिथि (तिथि) मानकीकृत तिथि प्रारूप में नियत तिथि। उदाहरण: 2019-05-31.
देय तिथि का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
इनवॉइस तिथि (पाठ) चालान पर लिखी गई चालान तिथि।
इनवॉइस तिथि (तिथि) मानकीकृत दिनांक प्रारूप में चालान की तारीख। उदाहरण: 2019-05-31.
इनवॉइस तिथि का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
इनवॉइस आईडी चालान आईडी.
इनवॉइस आईडी का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
इनवॉइस योग (पाठ) चालान पर लिखे अनुसार चालान का कुल योग।
इनवॉइस योग (संख्या) मानकीकृत दिनांक प्रारूप में चालान का कुल विवरण। उदाहरण: 2019-05-31.
इनवॉइस योग का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
पंक्ति आइटम चालान से निकाले गए लाइन आइटम. प्रत्येक कॉलम के लिए विश्वास अंक उपलब्ध हैं।
  • लाइन आइटम राशि: लाइन आइटम के लिए राशि. पाठ्य और संख्या प्रारूप में लौटाया गया।
  • पंक्ति वस्तु विवरण: पंक्ति वस्तु के लिए विवरण. पाठ प्रारूप में लौटाया गया.
  • लाइन आइटम मात्रा: लाइन आइटम के लिए मात्रा. पाठ्य और संख्या प्रारूप में लौटाया गया।
  • लाइन आइटम इकाई मूल्य: लाइन आइटम के लिए इकाई मूल्य. पाठ्य और संख्या प्रारूप में लौटाया गया।
  • लाइन आइटम उत्पाद कोड: लाइन आइटम के लिए उत्पाद कोड. पाठ प्रारूप में लौटाया गया.
  • लाइन आइटम इकाई: लाइन आइटम के लिए इकाई (उदाहरण के लिए, किलोग्राम और पाउंड). पाठ प्रारूप में लौटाया गया.
  • लाइन आइटम दिनांक: लाइन आइटम के लिए दिनांक. पाठ और दिनांक प्रारूप में लौटाया गया।
  • लाइन आइटम कर: किसी लाइन आइटम के लिए कर. पाठ्य और संख्या प्रारूप में लौटाया गया।
  • लाइन आइटम सभी कॉलम: लाइन आइटम से सभी कॉलम को पाठ की एक पंक्ति के रूप में लौटाता है।
भुगतान की शर्तें चालान के भुगतान की शर्तें.
भुगतान की शर्तों का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
खरीद आदेश क्रय आदेश.
खरीद आदेश का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
पिछला अवैतनिक शेष (पाठ) चालान पर लिखे अनुसार पिछला अवैतनिक शेष।
पिछला अवैतनिक शेष (संख्या) मानकीकृत संख्या प्रारूप में पिछला अवैतनिक शेष। उदाहरण: 1234.98.
पिछले अवैतनिक शेष राशि का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
प्रेषण पता धन प्रेषण पता.
प्रेषण पते का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
प्रेषण पता प्राप्तकर्ता धन प्रेषण पता प्राप्तकर्ता.
प्रेषण पता प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
सेवा पता सेवा पता.
सेवा पते का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
सेवा पता प्राप्तकर्ता सेवा पता प्राप्तकर्ता.
सेवा पता प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
सेवा शुरू करने की तारीख (टेक्स्ट) सेवा प्रारंभ तिथि जैसा कि चालान पर लिखा है।
सेवा शुरू करने की तारीख (तारीख) मानकीकृत दिनांक प्रारूप में सेवा प्रारंभ तिथि। उदाहरण: 2019-05-31.
सेवा शुरू करने की तारीख का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
सेवा अंतिम तिथि (टेक्स्ट) सेवा समाप्ति तिथि, जैसा कि चालान पर लिखा है।
सेवा अंतिम तिथि (तिथि) मानकीकृत दिनांक प्रारूप में सेवा समाप्ति तिथि। उदाहरण: 2019-05-31.
सेवा समाप्ति तिथि का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
शिपिंग पता शिपिंग पता।
शिपिंग पते का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
शिपिंग पता प्राप्तकर्ता शिपिंग पता प्राप्तकर्ता.
शिपिंग पता प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
उप योग (पाठ) चालान पर लिखा उप-योग।
उप योग (संख्या) मानकीकृत संख्या प्रारूप में उप-योग. उदाहरण: 1234.98.
उप योग का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
कुल कर (पाठ) चालान पर लिखा कुल कर।
कुल कर (संख्या) मानकीकृत संख्या प्रारूप में कुल कर. उदाहरण: 1234.98.
कुल कर का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
विक्रेता पता विक्रेता का पता.
विक्रेता के पते का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
विक्रेता पता प्राप्तकर्ता विक्रेता का पता प्राप्तकर्ता.
विक्रेता पता प्राप्तकर्ता का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
विक्रेता का नाम विक्रेता का नाम.
विक्रेता नाम का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
विक्रेता कर ID विक्रेता से संबद्ध करदाता संख्या.
विक्रेता टैक्स आईडी का विश्वास मॉडल अपनी भविष्यवाणी में कितना आश्वस्त है। 0 (कम आत्मविश्वास) और 1 (उच्च आत्मविश्वास) के बीच स्कोर।
पाठ का पता लगाया किसी चालान पर OCR चलाने से पहचाने गए पाठ की पंक्ति। पाठ की सूची के एक भाग के रूप में लौटाया गया.
पता लगायी गई की कुंजी-मूल्य युग्म सभी पहचाने गए लेबल या कुंजियाँ और उनसे संबंधित प्रतिक्रियाएँ या मान हैं। आप इनका उपयोग उन अतिरिक्त मानों को निकालने के लिए कर सकते हैं जो फ़ील्ड की पूर्वनिर्धारित सूची का हिस्सा नहीं हैं।
पता लगाया गया मान कुंजी-मूल्य युग्म सभी पहचाने गए लेबल या कुंजियाँ और उनसे संबंधित प्रतिक्रियाएँ या मान हैं। आप इनका उपयोग उन अतिरिक्त मानों को निकालने के लिए कर सकते हैं जो फ़ील्ड की पूर्वनिर्धारित सूची का हिस्सा नहीं हैं।

कुंजी-मूल्य युग्म

कुंजी-मूल्य युग्म सभी पहचाने गए लेबल या कुंजियाँ और उनसे संबंधित प्रतिक्रियाएँ या मान हैं। आप इनका उपयोग उन अतिरिक्त मानों को निकालने के लिए कर सकते हैं जो फ़ील्ड की पूर्वनिर्धारित सूची का हिस्सा नहीं हैं।

इनवॉइस प्रोसेसिंग मॉडल द्वारा पता लगाए गए सभी कुंजी-मान युग्मों को देखने के लिए, आप स्क्रीनशॉट में दिखाए अनुसार अपने क्लाउड फ्लो में HTML तालिका बनाएँ क्रिया जोड़ सकते हैं और क्लाउड फ्लो चला सकते हैं।

किसी इनवॉइस पर सभी कुंजी-मूल्य युग्मों का स्क्रीनशॉट.

किसी इनवॉइस पर सभी कुंजी-मूल्य युग्मों का स्क्रीनशॉट - परिणाम.

किसी विशिष्ट कुंजी को निकालने के लिए जिसका मूल्य आप जानते हैं, आप इसका उपयोग कर सकते हैं फ़िल्टर सरणी नीचे स्क्रीनशॉट में दिखाए अनुसार कार्रवाई करें। स्क्रीनशॉट के उदाहरण में, हम कुंजी के लिए मान निकालना चाहते हैं दूरभाष:

किसी कुंजी को दिए जाने पर मान प्राप्त करने का स्क्रीनशॉट।

सीमाएँ

निम्नलिखित सीमा पूर्वनिर्मित मॉडल सहित दस्तावेज़ प्रसंस्करण मॉडल में प्रति परिवेश किए गए कॉल पर लागू होती है: रसीद प्रसंस्करण और चालान प्रसंस्करण।

कार्रवाई आप LIMIT नवीकरण अवधि
कॉल (प्रति वातावरण) 360 60 सेकंड

कस्टम इनवॉइस प्रोसेसिंग समाधान बनाएं

इनवॉइस प्रोसेसिंग प्रीबिल्ट AI मॉडल को इनवॉइस में पाए जाने वाले सामान्य फ़ील्ड को निकालने के लिए डिज़ाइन किया गया है। चूंकि प्रत्येक व्यवसाय अद्वितीय होता है, इसलिए हो सकता है कि आप इस पूर्वनिर्मित मॉडल में शामिल फ़ील्ड के अलावा अन्य फ़ील्ड निकालना चाहें। ऐसा भी हो सकता है कि आप जिस विशेष प्रकार के इनवॉइस पर काम करते हैं, उसके लिए कुछ मानक फ़ील्ड ठीक से निकाले नहीं गए हों। इसका समाधान करने के लिए दो विकल्प हैं:

  • कस्टम इनवॉइस प्रोसेसिंग मॉडल का उपयोग करें: डिफ़ॉल्ट द्वारा निकाले जाने वाले फ़ील्ड के अतिरिक्त निकाले जाने वाले नए फ़ील्ड जोड़कर या ठीक से निकाले न गए दस्तावेज़ों के नमूने जोड़कर प्रीबिल्ट इनवॉइस प्रोसेसिंग मॉडल के व्यवहार को बढ़ाएँ। प्रीबिल्ट इनवॉइस प्रोसेसिंग मॉडल को बढ़ाने का तरीका जानने के लिए, दस्तावेज़ का प्रकार चुनें पर जाएँ.

  • कच्चे OCR परिणाम देखें: हर बार जब इनवॉइस प्रोसेसिंग प्रीबिल्ट AI मॉडल आपके द्वारा प्रदान की गई फ़ाइल को संसाधित करता है, तो यह फ़ाइल पर लिखे गए प्रत्येक शब्द को निकालने के लिए एक OCR ऑपरेशन भी करता है। आप मॉडल द्वारा उपलब्ध कराए गए पता लगाए गए पाठ आउटपुट पर कच्चे OCR परिणामों तक पहुंच सकते हैं। पता लगाए गए पाठ द्वारा लौटाई गई सामग्री पर एक सरल खोज आपके लिए आवश्यक डेटा प्राप्त करने के लिए पर्याप्त हो सकती है।

  • दस्तावेज़ प्रसंस्करण का उपयोग करें: के साथ, आप अपने स्वयं के कस्टम AI मॉडल का निर्माण भी कर सकते हैं ताकि आप जिन दस्तावेज़ों के साथ काम करते हैं, उनके लिए आवश्यक विशिष्ट फ़ील्ड और तालिकाएँ निकाल सकें। AI Builder बस एक दस्तावेज़ प्रसंस्करण मॉडल बनाएं और उसे चालान से सारी जानकारी निकालने के लिए प्रशिक्षित करें जो चालान निष्कर्षण मॉडल के साथ अच्छी तरह से काम नहीं करता है।

एक बार जब आप अपने कस्टम दस्तावेज़ प्रसंस्करण मॉडल को प्रशिक्षित कर लेते हैं, तो आप इसे क्लाउड प्रवाह में इनवॉइस प्रसंस्करण प्रीबिल्ट मॉडल के साथ संयोजित कर सकते हैं। Power Automate

यहाँ कुछ उदाहरण दिए गए हैं:

इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल द्वारा लौटाए न जाने वाले अतिरिक्त फ़ील्ड को निकालने के लिए कस्टम दस्तावेज़ प्रोसेसिंग मॉडल का उपयोग करें

इस उदाहरण में, हमने एक कस्टम दस्तावेज़ प्रसंस्करण मॉडल को प्रशिक्षित किया है, ताकि वफादारी कार्यक्रम संख्या निकाली जा सके, जो केवल प्रदाताओं Adatum और Contoso के चालानों में मौजूद है।

जब किसी फ़ोल्डर में कोई नया इनवॉइस जोड़ा जाता है, तो क्लाउड प्रवाह प्रारंभ हो जाता है। SharePoint इसके बाद यह डेटा निकालने के लिए इनवॉइस प्रोसेसिंग प्रीबिल्ट AI मॉडल को कॉल करता है। इसके बाद, हम जांचते हैं कि संसाधित किए गए चालान का विक्रेता Adatum या Contoso में से है या नहीं। यदि ऐसा है, तो हम एक कस्टम दस्तावेज़ प्रसंस्करण मॉडल को कॉल करते हैं जिसे हमने उस वफादारी संख्या को प्राप्त करने के लिए प्रशिक्षित किया है। अंत में, हम इनवॉइस से निकाले गए डेटा को एक्सेल फ़ाइल में सेव कर लेते हैं।

चालान और दस्तावेज़ प्रसंस्करण क्लाउड प्रवाह का स्क्रीनशॉट.

यदि इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल द्वारा लौटाए गए फ़ील्ड के लिए कॉन्फ़िडेंस स्कोर कम है, तो कस्टम दस्तावेज़ प्रोसेसिंग मॉडल का उपयोग करें

इस उदाहरण में, हमने चालान से कुल राशि निकालने के लिए एक कस्टम दस्तावेज़ प्रसंस्करण मॉडल को प्रशिक्षित किया, जहां चालान प्रसंस्करण पूर्वनिर्मित मॉडल का उपयोग करते समय हमें आमतौर पर कम विश्वास स्कोर मिलता है।

जब किसी फ़ोल्डर में कोई नया इनवॉइस जोड़ा जाता है, तो क्लाउड प्रवाह प्रारंभ हो जाता है। SharePoint इसके बाद यह डेटा निकालने के लिए इनवॉइस प्रोसेसिंग प्रीबिल्ट AI मॉडल को कॉल करता है। इसके बाद, हम जाँचते हैं कि क्या इनवॉइस कुल मूल्य संपत्ति के लिए विश्वास स्कोर 0.65 से कम है। यदि ऐसा है, तो हम एक कस्टम दस्तावेज़ प्रसंस्करण मॉडल को कॉल करते हैं जिसे हमने चालान के साथ प्रशिक्षित किया है जहां हमें आमतौर पर कुल फ़ील्ड के लिए कम विश्वास स्कोर मिलता है। अंत में, हम इनवॉइस से निकाले गए डेटा को एक्सेल फ़ाइल में सेव कर लेते हैं।

कम स्कोर के लिए चालान और दस्तावेज़ प्रसंस्करण क्लाउड प्रवाह का स्क्रीनशॉट।

उन चालानों को संभालने के लिए चालान प्रसंस्करण प्रीबिल्ट मॉडल का उपयोग करें जिन्हें संभालने के लिए कस्टम दस्तावेज़ प्रसंस्करण मॉडल को प्रशिक्षित नहीं किया गया है

इनवॉइस प्रोसेसिंग प्रीबिल्ट मॉडल का उपयोग करने का एक तरीका यह है कि इसे फ़ॉलबैक मॉडल के रूप में उपयोग किया जाए, ताकि उन इनवॉइस को संभाला जा सके, जिन्हें आपने अपने कस्टम दस्तावेज़ प्रोसेसिंग मॉडल में प्रशिक्षित नहीं किया है। उदाहरण के लिए, मान लीजिए कि आपने एक दस्तावेज़ प्रसंस्करण मॉडल बनाया है, और उसे अपने शीर्ष 20 चालान प्रदाताओं से डेटा निकालने के लिए प्रशिक्षित किया है। फिर आप सभी नए चालानों या कम मात्रा वाले चालानों को संसाधित करने के लिए चालान प्रसंस्करण पूर्वनिर्मित मॉडल का उपयोग कर सकते हैं। आप यह कैसे कर सकते हैं इसका एक उदाहरण यहां दिया गया है:

यह क्लाउड प्रवाह तब शुरू होता है जब किसी फ़ोल्डर में कोई नया इनवॉइस जोड़ा जाता है। SharePoint इसके बाद यह अपना डेटा निकालने के लिए एक कस्टम दस्तावेज़ प्रसंस्करण मॉडल को कॉल करता है। इसके बाद, हम जांचते हैं कि पता लगाए गए संग्रह के लिए विश्वास स्कोर 0.65 से कम है या नहीं। यदि ऐसा है, तो संभवतः इसका अर्थ यह है कि प्रदान किया गया इनवॉयस कस्टम मॉडल के लिए उपयुक्त नहीं है। फिर हम प्रीबिल्ट इनवॉइस प्रोसेसिंग मॉडल कहते हैं। अंत में, हम इनवॉइस से निकाले गए डेटा को एक्सेल फ़ाइल में सेव कर लेते हैं।

नए चालान के लिए चालान और दस्तावेज़ प्रसंस्करण क्लाउड प्रवाह का स्क्रीनशॉट।