Siapkan lingkungan pengembangan Python untuk Azure Machine Learning
BERLAKU UNTUK: Python SDK azure-ai-ml v2 (saat ini)
Pelajari cara mengonfigurasi lingkungan pengembangan Python untuk Azure Machine Learning.
Tabel berikut ini memperlihatkan setiap lingkungan pengembangan yang tercakup dalam artikel ini, bersama dengan pro dan kontra.
Lingkungan | Pro | Kontra |
---|---|---|
Lingkungan lokal | Kontrol penuh atas lingkungan pengembangan dan dependensi Anda. Jalankan dengan alat {i>build | Butuh waktu lebih lama untuk memulai. Paket SDK yang diperlukan harus diinstal, dan lingkungan juga harus diinstal jika Anda belum memilikinya. |
Data Science Virtual Machine (DSVM) | Mirip dengan instans komputasi berbasis cloud (Python telah diinstal sebelumnya), tetapi dengan ilmu data populer tambahan dan alat pembelajaran mesin yang telah diinstal sebelumnya. Mudah diskalakan dan digabungkan dengan alat dan alur kerja kustom lainnya. | Pengalaman memulai yang lebih lambat dibandingkan dengan instans komputasi berbasis {i>cloud. |
Instans komputasi Azure Pembelajaran Mesin | Cara termudah untuk memulai. SDK sudah diinstal di VM ruang kerja Anda, dan tutorial notebook telah dikloning sebelumnya dan siap dijalankan. | Kurangnya kontrol atas lingkungan pengembangan dan dependensi Anda. Biaya tambahan yang dikeluarkan untuk Linux VM (VM dapat dihentikan ketika tidak digunakan untuk menghindari biaya). Lihat detail harga. |
Artikel ini juga menyediakan tip penggunaan tambahan untuk alat berikut:
Jupyter Notebooks: Jika sudah menggunakan Jupyter Notebooks, SDK memiliki beberapa tambahan yang harus Anda instal.
Visual Studio Code: Jika Anda menggunakan Visual Studio Code, ekstensi Azure Pembelajaran Mesin menyertakan dukungan bahasa untuk Python, dan fitur untuk membuat bekerja dengan Azure Pembelajaran Mesin jauh lebih nyaman dan produktif.
Prasyarat
- Ruang kerja Azure Machine Learning. Jika tidak memilikinya, Anda bisa membuat ruang kerja Azure Machine Learning melalui Portal Azure, Azure CLI, dan templat Azure Resource Manager.
Lokal dan DSVM saja: Membuat file konfigurasi ruang kerja
{i>Filefileconfig.json, dan memiliki format berikut:
{
"subscription_id": "<subscription-id>",
"resource_group": "<resource-group>",
"workspace_name": "<workspace-name>"
}
{i>File
Untuk menggunakan file ini dari kode Anda, gunakan MLClient.from_config
metode . Kode ini memuat informasi dari {i>file
Buat {i>file
Studio Azure Machine Learning
Unduh file:
- Masuk ke Studio Azure Machine Learning
- Di toolbar studio Azure Machine Learning, di kanan atas, pilih nama ruang kerja Anda.
- Pilih tautan Unduh file konfigurasi.
Azure Machine Learning Python SDK
Buat skrip untuk menyambungkan ke ruang kerja Azure Pembelajaran Mesin Anda. Pastikan untuk
subscription_id
mengganti,resource_group
danworkspace_name
dengan milik Anda sendiri.BERLAKU UNTUK: Python SDK azure-ai-ml v2 (saat ini)
#import required libraries from azure.ai.ml import MLClient from azure.identity import DefaultAzureCredential #Enter details of your Azure Machine Learning workspace subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' workspace = '<AZUREML_WORKSPACE_NAME>' #connect to the workspace ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group, workspace)
Komputer lokal atau lingkungan komputer virtual jarak jauh
Anda dapat mengatur lingkungan di komputer lokal atau mesin virtual jarak jauh, seperti instans komputasi Azure Machine Learning atau Data Science VM.
Untuk mengonfigurasi lingkungan pengembangan lokal atau komputer virtual jarak jauh:
Buat lingkungan virtual Python (virtualenv, conda).
Catatan
Meskipun tidak diperlukan, Anda disarankan menggunakan Anaconda atau Miniconda untuk mengelola lingkungan virtual Python dan menginstal paket.
Penting
Jika Anda menggunakan Linux atau macOS dan menggunakan {i>shellbashbash perintah untuk memulai shell bash baru dan jalankan perintah di sana.
Aktifkan lingkungan virtual Python yang baru dibuat.
Untuk mengonfigurasi lingkungan lokal Anda untuk menggunakan ruang kerja Azure Pembelajaran Mesin Anda, buat file konfigurasi ruang kerja atau gunakan yang sudah ada.
Setelah menyiapkan lingkungan lokal, Anda siap untuk mulai bekerja dengan Azure Machine Learning. Lihat Tutorial: Azure Pembelajaran Mesin dalam sehari untuk memulai.
Jupyter Notebooks
Saat menjalankan server Jupyter Notebooks lokal, disarankan agar Anda membuat kernel IPython untuk lingkungan virtual Python Anda. Proses ini membantu memastikan perilaku impor kernel dan paket yang diharapkan.
Aktifkan kernel IPython khusus lingkungan
conda install notebook ipykernel
Buat kernel untuk lingkungan virtual Python Anda. Pastikan untuk mengganti
<myenv>
dengan nama lingkungan virtual Python Anda.ipython kernel install --user --name <myenv> --display-name "Python (myenv)"
Luncurkan server Jupyter Notebook
Tip
Misalnya notebook, lihat repositori AzureML-Examples . Contoh SDK terletak di bawah /sdk/python. Misalnya, contoh Notebook konfigurasi.
Visual Studio Code
Untuk menggunakan Visual Studio Code untuk pengembangan:
- Instal Visual Studio Code.
- Instal ekstensi Azure Machine Learning Visual Studio Code (pratinjau).
Setelah ekstensi Visual Studio Code terinstal, gunakan ekstensi tersebut untuk:
- Mengelola sumber daya Azure Machine Learning Anda
- Menyambungkan ke instans komputasi Azure Machine Learning
- Men-debug titik akhir online secara lokal
- Menyebarkan model terlatih.
Instans komputasi Azure Machine Learning
Instans komputasi Azure Pembelajaran Mesin adalah stasiun kerja Azure berbasis cloud yang aman yang menyediakan server Jupyter Notebook, JupyterLab, dan lingkungan pembelajaran mesin yang dikelola sepenuhnya.
Tidak ada yang perlu diinstal atau dikonfigurasi untuk instans komputasi.
Buat kapan saja dari dalam ruang kerja Azure Machine Learning Anda. Berikan nama saja dan tentukan jenis Azure VM. Coba sekarang dengan Buat sumber daya untuk memulai.
Untuk mempelajari selengkapnya tentang instans komputasi, termasuk cara menginstal paket, lihat Membuat instans komputasi Azure Pembelajaran Mesin.
Tip
Untuk mencegah dikenakannya biaya untuk instans komputasi yang tidak digunakan, aktifkan matikan diam.
Selain server Jupyter Notebook dan JupyterLab, Anda dapat menggunakan instans komputasi di fitur notebook terintegrasi di dalam studio Azure Pembelajaran Mesin.
Anda juga dapat menggunakan ekstensi Azure Machine Learning Visual Studio Code untuk terhubung ke instans komputasi jarak jauh menggunakan VS Code.
Data Science Virtual Machine
Data Science VM adalah gambar mesin virtual (VM) khusus yang dapat Anda gunakan sebagai lingkungan pengembangan. Ini dirancang untuk pekerjaan ilmu data yang telah dikonfigurasi sebelumnya alat dan perangkat lunak seperti:
- Paket seperti TensorFlow, PyTorch, Scikit-learn, XGBoost, dan Azure Machine Learning SDK
- Alat ilmu data populer seperti Spark Standalone dan Drill
- Alat Azure seperti Azure CLI, AzCopy, dan Storage Explorer
- Lingkungan pengembangan terintegrasi (IDEs) seperti Visual Studio Code dan PyCharm
- Jupyter Notebook Server
Untuk daftar alat yang lebih komprehensif, lihat panduan alat Data Science VM.
Penting
Jika Anda berencana menggunakan Data Science VM sebagai target komputasi untuk pelatihan atau tugas inferensi Anda, hanya Ubuntu yang didukung.
Untuk menggunakan Data Science VM sebagai lingkungan pengembangan:
Buat Data Science VM menggunakan salah satu metode berikut:
Gunakan portal Microsoft Azure untuk membuat Ubuntu atau Windows DSVM.
Menggunakan Azure CLI
Untuk membuat Ubuntu Data Science VM, gunakan perintah berikut:
# create a Ubuntu Data Science VM in your resource group # note you need to be at least a contributor to the resource group in order to execute this command successfully # If you need to create a new resource group use: "az group create --name YOUR-RESOURCE-GROUP-NAME --location YOUR-REGION (For example: westus2)" az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image microsoft-dsvm:linux-data-science-vm-ubuntu:linuxdsvmubuntu:latest --admin-username YOUR-USERNAME --admin-password YOUR-PASSWORD --generate-ssh-keys --authentication-type password
Untuk membuat Windows DSVM, gunakan perintah berikut:
# create a Windows Server 2016 DSVM in your resource group # note you need to be at least a contributor to the resource group in order to execute this command successfully az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image microsoft-dsvm:dsvm-windows:server-2016:latest --admin-username YOUR-USERNAME --admin-password YOUR-PASSWORD --authentication-type password
Buat lingkungan conda untuk Azure Pembelajaran Mesin SDK:
conda create -n py310 python=310
Setelah lingkungan dibuat, aktifkan dan instal SDK
conda activate py310 pip install azure-ai-ml azure-identity
Untuk mengonfigurasi VM Ilmu Data untuk menggunakan ruang kerja Azure Pembelajaran Mesin Anda, buat file konfigurasi ruang kerja atau gunakan yang sudah ada.
Tip
Mirip dengan lingkungan lokal, Anda dapat menggunakan Visual Studio Code dan ekstensi Azure Machine Learning Visual Studio Code untuk berinteraksi dengan Azure Machine Learning.
Selengkapnya, lihat Data Science Virtual Machines.
Langkah berikutnya
- Latih dan sebarkan model di Azure Machine Learning dengan himpunan data MNIST.
- Lihat Azure Machine Learning SDK untuk referensi Python.