Udostępnij za pośrednictwem


Referencja narzędzi Databricks (dbutils)

Ten artykuł zawiera odniesienia do narzędzi usługi Databricks (dbutils). Narzędzia udostępniają polecenia, które umożliwiają pracę ze środowiskiem usługi Databricks z notesów. Można na przykład zarządzać plikami i magazynem obiektów oraz pracować z danymi poufnymi. dbutils są dostępne w notatnikach Python, R i Scala.

Uwaga

dbutils Obsługuje tylko środowiska obliczeniowe korzystające z systemu plików DBFS.

moduły użytkowe

W poniższej tabeli wymieniono moduły Databricks Utilities, które można pobrać przy użyciu dbutils.help().

Moduł Opis
dane Narzędzia do zrozumienia zestawów danych i interakcji z nimi (EKSPERYMENTALNE)
Fs Narzędzia do uzyskiwania dostępu do systemu plików usługi Databricks (DBFS)
prace Narzędzia do korzystania z funkcji zadań
biblioteki Przestarzałe. Narzędzia do zarządzania bibliotekami o sesyjnym zakresie
notatnik Narzędzia do zarządzania przepływem sterowania w notatnikach (EKSPERYMENTALNE)
tajemnice Narzędzia do korzystania z wpisów tajnych w notesach
widżety Narzędzia do sparametryzowania notesów.
Api Narzędzia do zarządzania kompilacjami aplikacji

Pomoc dotycząca poleceń

Aby wyświetlić listę poleceń dla modułu narzędziowego wraz z krótkim opisem każdego polecenia, dołącz .help() po nazwie modułu narzędziowego. W poniższym przykładzie wymieniono dostępne polecenia dla narzędzia notesu:

dbutils.notebook.help()
The notebook module.

exit(value: String): void -> This method lets you exit a notebook with a value
run(path: String, timeoutSeconds: int, arguments: Map): String -> This method runs a notebook and returns its exit value

Aby uzyskać pomoc dotyczącą polecenia, uruchom polecenie dbutils.<utility-name>.help("<command-name>"). Poniższy przykład przedstawia pomoc dotyczącą komendy kopiowania narzędzi systemu plików, dbutils.fs.cp:

dbutils.fs.help("cp")
/**
* Copies a file or directory, possibly across FileSystems.
*
* Example: cp("/mnt/my-folder/a", "dbfs:/a/b")
*
* @param from FileSystem URI of the source file or directory
* @param to FileSystem URI of the destination file or directory
* @param recurse if true, all files and directories will be recursively copied
* @return true if all files were successfully copied
*/
cp(from: java.lang.String, to: java.lang.String, recurse: boolean = false): boolean

Narzędzie danych (dbutils.data)

Ważne

Ta funkcja jest dostępna w publicznej wersji zapoznawczej.

Uwaga

Dostępne w środowisku Databricks Runtime 9.0 lub nowszym.

Narzędzie do obsługi danych umożliwia zrozumienie zestawów danych i interakcję z nimi.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.data.help().

Polecenie Opis
podsumuj Podsumowanie ramki danych platformy Spark i wizualizowanie statystyk w celu uzyskania szybkich szczegółowych informacji

summarize — polecenie (dbutils.data.summarize)

Uwaga

Ta funkcja jest dostępna w publicznej wersji zapoznawczej.

summarize(df: Object, precise: boolean): void

Oblicza i wyświetla podsumowanie statystyk ramki danych platformy Apache Spark lub ramki danych pandas. To polecenie jest dostępne dla języków Python, Scala i R.

Ważne

To polecenie analizuje pełną zawartość ramki danych. Uruchomienie tego polecenia dla bardzo dużych ramek danych może być bardzo kosztowne.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.data.help("summarize")

W środowisku Databricks Runtime 10.4 LTS i nowszym można użyć dodatkowego precise parametru, aby dostosować dokładność obliczonych statystyk.

  • Jeśli precise jest ustawiona na wartość false (wartość domyślna), niektóre zwrócone statystyki obejmują przybliżenia w celu skrócenia czasu przetwarzania.
    • Liczba unikatowych wartości kolumn kategorii może mieć wartość ok. 5% względnego błędu dla kolumn o wysokiej kardynalności.
    • Licznik częstych wartości może mieć błąd wynoszący do 0,01%, gdy liczba unikalnych wartości przekracza 10000.
    • Histogramy i oszacowania percentylu mogą zawierać błąd do 0,01% względem całkowitej liczby wierszy.
  • Gdy precise jest ustawiona na wartość true, statystyki są obliczane z wyższą dokładnością. Wszystkie statystyki z wyjątkiem histogramów i percentyli dla kolumn liczbowych są teraz dokładne.
    • Histogramy i oszacowania percentylu mogą zawierać błąd do 0,0001% względem całkowitej liczby wierszy.

Etykietka narzędzia w górnej części danych wyjściowych podsumowania danych wskazuje tryb bieżącego uruchomienia.

Przykład

W tym przykładzie wyświetlane są statystyki podsumowujące dla DataFrame Apache Spark z domyślnie włączonymi przybliżeniami. Aby wyświetlić wyniki, uruchom to polecenie w notesie. Ten przykład jest oparty na przykładowych zestawach danych.

Pyton
df = spark.read.format('csv').load(
  '/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv',
  header=True,
  inferSchema=True
)
dbutils.data.summarize(df)
R
df <- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv", source = "csv", header="true", inferSchema = "true")
dbutils.data.summarize(df)
Skala
val df = spark.read.format("csv")
  .option("inferSchema", "true")
  .option("header", "true")
  .load("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv")
dbutils.data.summarize(df)

Wizualizacja używa notacji SI do zwięzłego renderowania wartości liczbowych mniejszych niż 0,01 lub większych niż 10000. Na przykład wartość 1.25e-15 liczbowa będzie renderowana jako 1.25f. Jeden wyjątek: wizualizacja używa znaku "B" dla 1.0e9 (giga) zamiast "G".

Narzędzie systemu plików (dbutils.fs)

Narzędzie systemu plików umożliwia dostęp do Co to jest system plików DBFS?. Aby uzyskać dostęp do plików obszaru roboczego , użyj poleceń powłoki, takich jak %sh ls, ponieważ istnieją pewne ograniczenia podczas korzystania z poleceń dbutils.fs z plikami obszaru roboczego.

Ostrzeżenie

Implementacja Pythona wszystkich metod dbutils.fs używa snake_case zamiast camelCase do formatowania słów kluczowych.

Na przykład dbutils.fs.help() wyświetla opcję extraConfigsdbutils.fs.mount(). Jednak w języku Python należy użyć słowa kluczowego extra_configs.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.fs.help().

Polecenie Opis
Cp Kopiuje plik lub katalog, być może między różnymi systemami plików
głowa Zwraca do pierwszych bajtów "maxBytes" danego pliku jako ciąg zakodowany w formacie UTF-8
Ls Wyświetla zawartość katalogu
mkdirs Tworzy dany katalog, jeśli nie istnieje, tworząc również niezbędne katalogi nadrzędne
mocowanie Montuje dany katalog źródłowy w systemie plików DBFS w danym punkcie montowania.
mocowania Wyświetla informacje o tym, co jest instalowane w systemie plików DBFS
Mv Przenosi plik lub katalog, prawdopodobnie pomiędzy różnymi systemami plików
umieścić Zapisuje podany ciąg w pliku zakodowanym w formacie UTF-8
refreshMounts Wymusza odświeżenie pamięci podręcznej instalacji przez wszystkie maszyny w tym klastrze, zapewniając, że otrzymają najnowsze informacje
Rm Usuwa plik lub katalog
odmontować Usuwa punkt instalacji systemu plików DBFS
updateMount Podobnie jak w przypadku instalacji(), ale aktualizuje istniejący punkt instalacji zamiast tworzyć nowy

Napiwek

W notesach możesz użyć magicznego polecenia %fs, aby uzyskać dostęp do systemu plików DBFS. Na przykład kod %fs ls /Volumes/main/default/my-volume/ jest taki sam jak kod dbutils.fs.ls("/Volumes/main/default/my-volume/"). Zobacz magiczne polecenia.

polecenie cp (dbutils.fs.cp)

cp(from: String, to: String, recurse: boolean = false): boolean

Kopiuje plik lub katalog, możliwie na różnych systemach plików.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("cp")

Przykład

Ten przykład kopiuje plik o nazwie data.csv z /Volumes/main/default/my-volume/ do new-data.csv w tym samym woluminie.

Pyton
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

# Out[4]: True
R
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

# [1] TRUE
Skala
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

// res3: Boolean = true

komenda 'head' (dbutils.fs.head)

head(file: String, maxBytes: int = 65536): String

Zwraca do określonej maksymalnej liczby bajtów w danym pliku. Bajty są zwracane jako ciąg zakodowany w formacie UTF-8.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("head")

Przykład

W tym przykładzie wyświetlane są pierwsze 25 bajtów pliku data.csv znajdującego się w /Volumes/main/default/my-volume/.

Pyton
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

# [Truncated to first 25 bytes]
# Out[12]: 'Year,First Name,County,Se'
R
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

# [1] "Year,First Name,County,Se"
Skala
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

// [Truncated to first 25 bytes]
// res4: String =
// "Year,First Name,County,Se"

polecenie ls (dbutils.fs.ls)

ls(dir: String): Seq

Wyświetla zawartość katalogu.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("ls")

Przykład

W tym przykładzie są wyświetlane informacje o zawartości elementu /Volumes/main/default/my-volume/. Pole modificationTime jest dostępne w środowisku Databricks Runtime 10.4 LTS lub nowszym. W języku R modificationTime jest zwracany jako ciąg.

Pyton
dbutils.fs.ls("/Volumes/main/default/my-volume/")

# Out[13]: [FileInfo(path='dbfs:/Volumes/main/default/my-volume/data.csv', name='data.csv', size=2258987, modificationTime=1711357839000)]
R
dbutils.fs.ls("/Volumes/main/default/my-volume/")

# For prettier results from dbutils.fs.ls(<dir>), please use `%fs ls <dir>`

# [[1]]
# [[1]]$path
# [1] "/Volumes/main/default/my-volume/data.csv"

# [[1]]$name
# [1] "data.csv"

# [[1]]$size
# [1] 2258987

# [[1]]$isDir
# [1] FALSE

# [[1]]$isFile
# [1] TRUE

# [[1]]$modificationTime
# [1] "1711357839000"
Skala
dbutils.fs.ls("/tmp")

// res6: Seq[com.databricks.backend.daemon.dbutils.FileInfo] = WrappedArray(FileInfo(/Volumes/main/default/my-volume/data.csv, 2258987, 1711357839000))

polecenie mkdirs (dbutils.fs.mkdirs)

mkdirs(dir: String): boolean

Tworzy dany katalog, jeśli nie istnieje. Tworzy również wszelkie niezbędne katalogi nadrzędne.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mkdirs")

Przykład

W tym przykładzie zostanie utworzony katalog my-data w programie /Volumes/main/default/my-volume/.

Pyton
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

# Out[15]: True
R
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

# [1] TRUE
Skala
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

// res7: Boolean = true

polecenie montowania (dbutils.fs.mount)

mount(source: String, mountPoint: String, encryptionType: String = "", owner: String = null, extraConfigs: Map = Map.empty[String, String]): boolean

Instaluje określony katalog źródłowy w systemie plików DBFS w określonym punkcie instalacji.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mount")

Przykład

Pyton
dbutils.fs.mount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net",
  mount_point = "/mnt/<mount-name>",
  extra_configs = {"<conf-key>":dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")})
Skala
dbutils.fs.mount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net/<directory-name>",
  mountPoint = "/mnt/<mount-name>",
  extraConfigs = Map("<conf-key>" -> dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")))

Aby uzyskać dodatkowe przykłady kodu, zobacz Connect to Azure Data Lake Storage and Blob Storage.

polecenie "mounts" (dbutils.fs.mounts)

mounts: Seq

Wyświetla informacje o tym, co jest obecnie zainstalowane w systemie plików DBFS.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mounts")

Przykład

Ostrzeżenie

Użyj dbutils.fs.refreshMounts() na wszystkich innych uruchomionych klastrach, aby propagować nowe zamontowanie. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

Pyton
dbutils.fs.mounts()
Skala
dbutils.fs.mounts()

Aby uzyskać dodatkowe przykłady kodu, zobacz Connect to Azure Data Lake Storage and Blob Storage.

polecenie mv (dbutils.fs.mv)

mv(from: String, to: String, recurse: boolean = false): boolean

Przenosi plik lub katalog, być może między różnymi systemami plików. Przeniesienie to kopia, po której następuje usunięcie, nawet podczas przenoszenia wewnątrz systemów plików.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mv")

Przykład

W tym przykładzie plik rows.csv jest przenoszony z /Volumes/main/default/my-volume/ do /Volumes/main/default/my-volume/my-data/.

Pyton
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

# Out[2]: True
R
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

# [1] TRUE
Skala
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

// res1: Boolean = true

polecenie put (dbutils.fs.put)

put(file: String, contents: String, overwrite: boolean = false): boolean

Zapisuje określony ciąg w pliku. Ciąg jest zakodowany w formacie UTF-8.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("put")

Przykład

W tym przykładzie ciąg Hello, Databricks! jest zapisywany do pliku o nazwie hello.txt w /Volumes/main/default/my-volume/. Jeśli plik istnieje, zostanie zastąpiony.

Pyton
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", True)

# Wrote 2258987 bytes.
# Out[6]: True
R
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", TRUE)

# [1] TRUE
Skala
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", true)

// Wrote 2258987 bytes.
// res2: Boolean = true

polecenie refreshMounts (dbutils.fs.refreshMounts)

refreshMounts: boolean

Wymusza odświeżenie pamięci podręcznej instalacji przez wszystkie maszyny w klastrze, zapewniając, że otrzymają najnowsze informacje.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("refreshMounts")

Przykład

Pyton
dbutils.fs.refreshMounts()
Skala
dbutils.fs.refreshMounts()

Aby zobaczyć dodatkowe przykłady kodu, zobacz Connect to Azure Data Lake Storage and Blob Storage.

polecenie rm (dbutils.fs.rm)

rm(dir: String, recurse: boolean = false): boolean

Usuwa plik lub katalog i, opcjonalnie, całą jego zawartość. Jeśli określono plik, recurse parametr jest ignorowany. Jeśli zostanie określony katalog, wystąpi błąd, gdy recurse jest wyłączony, a katalog nie jest pusty.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("rm")

Przykład

W tym przykładzie usunięto cały katalog /Volumes/main/default/my-volume/my-data/ wraz z jego zawartością.

Pyton
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", True)

# Out[8]: True
R
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", TRUE)

# [1] TRUE
Skala
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", true)

// res6: Boolean = true

polecenie unmount (dbutils.fs.unmount)

unmount(mountPoint: String): boolean

Usuwa punkt instalacji systemu plików DBFS.

Ostrzeżenie

Aby uniknąć błędów, nigdy nie modyfikuj punktu instalacji, podczas gdy inne zadania odczytują lub zapisują w nim. Po zmodyfikowaniu punktu montowania, zawsze uruchamiaj dbutils.fs.refreshMounts() na wszystkich innych działających klastrach, aby rozpowszechnić wszystkie aktualizacje punktu montowania. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("unmount")

Przykład

dbutils.fs.unmount("/mnt/<mount-name>")

Aby uzyskać dodatkowe przykłady kodu, zobacz Connect to Azure Data Lake Storage and Blob Storage.

updateMount — polecenie (dbutils.fs.updateMount)

updateMount(source: String, mountPoint: String, encryptionType: String = "", owner: String = null, extraConfigs: Map = Map.empty[String, String]): boolean

Podobnie jak polecenie dbutils.fs.mount, ale aktualizuje istniejący punkt montowania zamiast tworzyć nowy. Zwraca błąd, jeśli punkt instalacji nie istnieje.

Ostrzeżenie

Aby uniknąć błędów, nigdy nie modyfikuj punktu instalacji, podczas gdy inne zadania odczytują lub zapisują w nim. Po zmodyfikowaniu punktu montowania, zawsze uruchamiaj dbutils.fs.refreshMounts() na wszystkich innych działających klastrach, aby rozpowszechnić wszystkie aktualizacje punktu montowania. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

To polecenie jest dostępne w środowisku Databricks Runtime 10.4 LTS i nowszym.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("updateMount")

Przykład

Pyton
dbutils.fs.updateMount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net",
  mount_point = "/mnt/<mount-name>",
  extra_configs = {"<conf-key>":dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")})
Skala
dbutils.fs.updateMount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net/<directory-name>",
  mountPoint = "/mnt/<mount-name>",
  extraConfigs = Map("<conf-key>" -> dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")))

Narzędzie do zarządzania zadaniami (dbutils.jobs)

Udostępnia ułatwienia do wykorzystywania cech zadań.

Uwaga

To narzędzie jest dostępne tylko dla języka Python.

W poniższej tabeli wymieniono dostępne moduły dla tego narzędzia, które można pobrać przy użyciu dbutils.jobs.help().

Moduł podrzędny Opis
wartościZadania Udostępnia narzędzia do wykorzystywania wartości zadań roboczych

subnarzędzie taskValues (dbutils.jobs.taskValues)

Uwaga

To podzadanie jest dostępne tylko dla języka Python.

Udostępnia polecenia do efektywnego wykorzystania wartości zadań.

To narzędzie podrzędne służy do ustawiania i pobierania dowolnych wartości podczas uruchamiania zadania. Te wartości są nazywane wartościami zadań . Każde zadanie może pobierać wartości ustawione przez zadania nadrzędne i ustawiać wartości do użycia przez zadania podrzędne.

Każda wartość zadania ma unikatowy klucz w ramach tego samego zadania. Ten unikatowy klucz jest nazywany kluczem wartości zadania. Dostęp do wartości zadania jest uzyskiwany przy użyciu nazwy zadania i klucza wartości zadania. Można to wykorzystać do przekazywania informacji dalej z zadania do zadania w toku tego samego wykonywania zadania. Można na przykład przekazać identyfikatory lub metryki, takie jak informacje o ocenie modelu uczenia maszynowego, między różnymi zadaniami w ramach przebiegu zadania.

W poniższej tabeli wymieniono dostępne polecenia dla tego podprogramu, które można uzyskać przy użyciu dbutils.jobs.taskValues.help().

Polecenie Opis
dostać Pobiera wartość zadań określonych dla danego zadania w bieżącym przebiegu zadań.
ustawić Ustawia lub aktualizuje wartość zadania. Dla uruchomienia zadania można skonfigurować maksymalnie 250 wartości zadań.

komenda 'get' (dbutils.jobs.taskValues.get)

Uwaga

To polecenie jest dostępne tylko dla języka Python.

W środowisku Databricks Runtime 10.4 lub starszym, jeśli get nie może znaleźć zadania, zamiast zostanie zgłoszony błąd ValueError.

get(taskKey: String, key: String, default: int, debugValue: int): Seq

Pobiera wartość zadań określonych dla danego zadania w bieżącym przebiegu zadań.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.jobs.taskValues.help("get")

Przykład

Na przykład:

dbutils.jobs.taskValues.get(taskKey    = "my-task", \
                            key        = "my-key", \
                            default    = 7, \
                            debugValue = 42)

W powyższym przykładzie:

  • taskKey to nazwa zadania, które ustawia wartość zadania. Jeśli polecenie nie może odnaleźć tego zadania, zostanie wywołany wyjątek ValueError.
  • key to nazwa klucza wartości zadania ustawionego za pomocą polecenia set (dbutils.jobs.taskValues.set). Jeśli polecenie nie może odnaleźć klucza tej wartości zadania, element ValueError zostanie zgłoszony (chyba że default zostanie określony).
  • default jest opcjonalną wartością zwracaną, jeśli key nie można jej odnaleźć. default nie może być None.
  • debugValue jest opcjonalną wartością zwracaną, jeśli spróbujesz pobrać wartość zadania z notesu uruchomionego poza pracą. Może to być przydatne podczas debugowania, gdy chcesz ręcznie uruchomić notatnik i zwrócić pewną wartość zamiast domyślnie podnosić TypeError. debugValue nie może być None.

Jeśli spróbujesz uzyskać wartość zadania z poziomu notebooka działającego poza kontekstem zadania, to polecenie domyślnie zgłasza błąd TypeError. Jeśli jednak argument debugValue jest określony w poleceniu, wartość debugValue jest zwracana zamiast wyzwalania TypeError.

set polecenie (dbutils.jobs.taskValues.set)

Uwaga

To polecenie jest dostępne tylko dla języka Python.

set(key: String, value: String): boolean

Ustawia lub aktualizuje wartość zadania. Dla uruchomienia zadania można skonfigurować maksymalnie 250 wartości zadań.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.jobs.taskValues.help("set")

Przykład

Przykłady obejmują:

dbutils.jobs.taskValues.set(key   = "my-key", \
                            value = 5)

dbutils.jobs.taskValues.set(key   = "my-other-key", \
                            value = "my other value")

W poprzednich przykładach:

  • key jest kluczem wartości zadania. Ten klucz musi być unikatowy dla zadania. Oznacza to, że jeśli dwa różne zadania ustawiają wartość zadania z kluczem K, są to dwie różne wartości zadań, które mają ten sam klucz K.
  • value jest wartością klucza dla tej wartości zadania. To polecenie musi być w stanie reprezentować wartość wewnętrznie w formacie JSON. Rozmiar reprezentacji JSON wartości nie może przekraczać 48 KiB.

Jeśli spróbujesz ustawić wartość zadania w notesie działającym poza zakresem zadania, to polecenie nic nie robi.

Narzędzie do obsługi biblioteki (dbutils.library)

Większość metod w module podrzędnym dbutils.library jest przestarzała. Zobacz Narzędzie biblioteki (dbutils.library) (starsza wersja).

Może być konieczne programowe ponowne uruchomienie procesu języka Python w usłudze Azure Databricks, aby upewnić się, że lokalnie zainstalowane lub uaktualnione biblioteki działają poprawnie w jądrze języka Python dla bieżącej usługi SparkSession. W tym celu uruchom polecenie dbutils.library.restartPython. Zobacz Ponowne uruchamianie procesu języka Python w usłudze Azure Databricks.

Narzędzie notatnika (dbutils.notebook)

Narzędzie notesu pozwala łączyć ze sobą notesy i działać na podstawie ich wyników. Zobacz orkiestrację notesów oraz modularyzację kodu w notesach.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.notebook.help().

Polecenie Opis
wyjście Zamyka notatnik z wartością
uruchom Uruchamia notebook i zwraca jego wartość wyjścia

polecenie exit (dbutils.notebook.exit)

exit(value: String): void

Kończy działanie notatnika z wartością.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.notebook.help("exit")

Przykład

W tym przykładzie notatnik kończy działanie z wartością Exiting from My Other Notebook.

Pyton
dbutils.notebook.exit("Exiting from My Other Notebook")

# Notebook exited: Exiting from My Other Notebook
R
dbutils.notebook.exit("Exiting from My Other Notebook")

# Notebook exited: Exiting from My Other Notebook
Skala
dbutils.notebook.exit("Exiting from My Other Notebook")

// Notebook exited: Exiting from My Other Notebook

Uwaga

Jeśli uruchomienie ma zapytanie ze strukturalnym strumieniowaniem działającym w tle, wywołanie dbutils.notebook.exit() nie kończy przebiegu. Przebieg będzie nadal wykonywany tak długo, jak zapytanie jest wykonywane w tle. Zapytanie uruchomione w tle można zatrzymać, klikając przycisk Anuluj w komórce zapytania lub uruchamiając polecenie query.stop(). Po zatrzymaniu zapytania można zakończyć przebieg za pomocą polecenia dbutils.notebook.exit().

polecenie uruchomienia (dbutils.notebook.run)

run(path: String, timeoutSeconds: int, arguments: Map): String

Uruchamia notebook i zwraca jego wartość zakończenia. Notatnik zostanie uruchomiony w bieżącym klastrze.

Uwaga

Maksymalna długość wartości ciągu zwróconej z run polecenia wynosi 5 MB. Zobacz Uzyskaj wynik dla pojedynczego uruchomienia (GET /jobs/runs/get-output).

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.notebook.help("run")

Przykład

W tym przykładzie uruchamiany jest notes o nazwie My Other Notebook w tej samej lokalizacji, co notes wywołujący. Wywołany notatnik kończy się wierszem kodu dbutils.notebook.exit("Exiting from My Other Notebook"). Jeśli wywoływany notebook nie zakończy działania w ciągu 60 sekund, zostanie zgłoszony wyjątek.

Pyton
dbutils.notebook.run("My Other Notebook", 60)

# Out[14]: 'Exiting from My Other Notebook'
Skala
dbutils.notebook.run("My Other Notebook", 60)

// res2: String = Exiting from My Other Notebook

Narzędzie do zarządzania tajemnicami (dbutils.secrets)

Narzędzie do zarządzania tajnymi informacjami umożliwia przechowywanie poufnych danych uwierzytelniających i uzyskiwanie do nich dostępu bez ich ujawniania w notesach. Zobacz Zarządzanie wpisami tajnymi i Krok 3. Używanie wpisów tajnych w notesie.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.secrets.help().

Polecenie Opis
dostać Pobiera reprezentację ciągu znakowego wartości tajnej z zakresem i kluczem
getBytes Pobiera bajtową reprezentację tajnej wartości z zakresem i kluczem
lista Wyświetla metadane tajemnic w określonym zakresie
listScopes Wyświetla listę tajnych zakresów

polecenie get (dbutils.secrets.get)

get(scope: String, key: String): String

Pobiera ciąg reprezentujący wartość tajną dla określonego zakresu i klucza sekretów.

Ostrzeżenie

Administratorzy, twórcy wpisów tajnych i użytkownicy, którym udzielono uprawnień , mogą odczytywać wpisy tajne usługi Azure Databricks. Chociaż usługa Azure Databricks stara się redagować wartości wpisów tajnych, które mogą być wyświetlane w notesach, nie można uniemożliwić takim użytkownikom odczytywania wpisów tajnych. Aby uzyskać więcej informacji, zobacz Tajne redagowanie.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("get")

Przykład

W tym przykładzie uzyskuje się reprezentację ciągu wartości tajnej dla zakresu o nazwie my-scope i klucza o nazwie my-key.

Pyton
dbutils.secrets.get(scope="my-scope", key="my-key")

# Out[14]: '[REDACTED]'
R
dbutils.secrets.get(scope="my-scope", key="my-key")

# [1] "[REDACTED]"
Skala
dbutils.secrets.get(scope="my-scope", key="my-key")

// res0: String = [REDACTED]

Polecenie getBytes (dbutils.secrets.getBytes)

getBytes(scope: String, key: String): byte[]

Pobiera reprezentację bajtów wartości tajnej dla określonego zakresu i klucza.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("getBytes")

Przykład

W tym przykładzie jest pobierana reprezentacja bajtów wartości tajnej (w tym przykładzie a1!b2@c3#) dla zakresu o nazwie my-scope i klucza o nazwie my-key.

Pyton
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

# Out[1]: b'a1!b2@c3#'
R
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

# [1] 61 31 21 62 32 40 63 33 23
Skala
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

// res1: Array[Byte] = Array(97, 49, 33, 98, 50, 64, 99, 51, 35)

list (polecenie dbutils.secrets.list)

list(scope: String): Seq

Wyświetla metadane dla sekretów w określonym zakresie.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("list")

Przykład

W tym przykładzie wymieniono metadane dla tajemnic w zakresie o nazwie my-scope.

Pyton
dbutils.secrets.list("my-scope")

# Out[10]: [SecretMetadata(key='my-key')]
R
dbutils.secrets.list("my-scope")

# [[1]]
# [[1]]$key
# [1] "my-key"
Skala
dbutils.secrets.list("my-scope")

// res2: Seq[com.databricks.dbutils_v1.SecretMetadata] = ArrayBuffer(SecretMetadata(my-key))

polecenie listScopes (dbutils.secrets.listScopes)

listScopes: Seq

Wyświetla listę dostępnych zakresów.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("listScopes")

Przykład

W tym przykładzie wymieniono dostępne zakresy.

Pyton
dbutils.secrets.listScopes()

# Out[14]: [SecretScope(name='my-scope')]
R
dbutils.secrets.listScopes()

# [[1]]
# [[1]]$name
# [1] "my-scope"
Skala
dbutils.secrets.listScopes()

// res3: Seq[com.databricks.dbutils_v1.SecretScope] = ArrayBuffer(SecretScope(my-scope))

Narzędzie widżetów (dbutils.widgets)

Narzędzie widgets umożliwia sparametryzowanie notesów. Zobacz Widżety usługi Databricks.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.widgets.help().

Polecenie Opis
lista rozwijana Tworzy widżet wejściowy pola rozwijanego z daną nazwą, wartością domyślną i opcjami.
rozwijana lista Tworzy widżet wejściowy listy rozwijanej o danej nazwie, wartości domyślnej i opcjach
dostać Pobiera bieżącą wartość widżetu wejściowego
getAll Pobiera mapę wszystkich nazw widżetów i ich wartości
getArgument Przestarzałe. Odpowiednik uzyskania
wielokrotny wybór Tworzy widżet wejściowy wielokrotnego wyboru o podanej nazwie, wartości domyślnej i opcjach
usuń Usuwa widżet wejściowy z notesu
usuńWszystkie Usuwa wszystkie widżety w notesie
tekst Tworzy widżet wprowadzania tekstu o podanej nazwie i wartości domyślnej

polecenie combobox (dbutils.widgets.combobox)

combobox(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet pola kombi z określoną nazwą programową, wartością domyślną, opcjami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("combobox")

Przykład

W tym przykładzie tworzony i wyświetlany jest widżet pola kombi o programowej nazwie fruits_combobox. Oferuje on opcje apple, banana, coconuti dragon fruit i jest ustawiona na początkową wartość banana. Ten widżet kombobox ma przypisaną etykietę Fruits. Ten przykład kończy się drukowaniem początkowej wartości widżetu kombibox, banana.

Pyton
dbutils.widgets.combobox(
  name='fruits_combobox',
  defaultValue='banana',
  choices=['apple', 'banana', 'coconut', 'dragon fruit'],
  label='Fruits'
)

print(dbutils.widgets.get("fruits_combobox"))

# banana
R
dbutils.widgets.combobox(
  name='fruits_combobox',
  defaultValue='banana',
  choices=list('apple', 'banana', 'coconut', 'dragon fruit'),
  label='Fruits'
)

print(dbutils.widgets.get("fruits_combobox"))

# [1] "banana"
Skala
dbutils.widgets.combobox(
  "fruits_combobox",
  "banana",
  Array("apple", "banana", "coconut", "dragon fruit"),
  "Fruits"
)

print(dbutils.widgets.get("fruits_combobox"))

// banana
SQL
CREATE WIDGET COMBOBOX fruits_combobox DEFAULT "banana" CHOICES SELECT * FROM (VALUES ("apple"), ("banana"), ("coconut"), ("dragon fruit"))

SELECT :fruits_combobox

-- banana

dropdown — komenda (dbutils.widgets.dropdown)

dropdown(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet listy rozwijanej z określoną nazwą programową, wartością domyślną, opcjami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("dropdown")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet listy rozwijanej o programowej nazwie toys_dropdown. Oferuje on opcje alphabet blocks, basketball, capei doll i jest ustawiona na początkową wartość basketball. Ten rozwijany widżet ma etykietę towarzyszącą Toys. Ten przykład kończy się wydrukiem początkowej wartości widżetu listy rozwijanej, basketball.

Pyton
dbutils.widgets.dropdown(
  name='toys_dropdown',
  defaultValue='basketball',
  choices=['alphabet blocks', 'basketball', 'cape', 'doll'],
  label='Toys'
)

print(dbutils.widgets.get("toys_dropdown"))

# basketball
R
dbutils.widgets.dropdown(
  name='toys_dropdown',
  defaultValue='basketball',
  choices=list('alphabet blocks', 'basketball', 'cape', 'doll'),
  label='Toys'
)

print(dbutils.widgets.get("toys_dropdown"))

# [1] "basketball"
Skala
dbutils.widgets.dropdown(
  "toys_dropdown",
  "basketball",
  Array("alphabet blocks", "basketball", "cape", "doll"),
  "Toys"
)

print(dbutils.widgets.get("toys_dropdown"))

// basketball
SQL
CREATE WIDGET DROPDOWN toys_dropdown DEFAULT "basketball" CHOICES SELECT * FROM (VALUES ("alphabet blocks"), ("basketball"), ("cape"), ("doll"))

SELECT :toys_dropdown

-- basketball

polecenie get (dbutils.widgets.get)

get(name: String): String

Pobiera bieżącą wartość widżetu z określoną nazwą programową. Ta nazwa programowa może być następująca:

  • Nazwa niestandardowego widżetu w notesie, na przykład fruits_combobox lub toys_dropdown.
  • Nazwa niestandardowego parametru przekazywanego do notesu jako część zadania notesu, na przykład name lub age. Aby uzyskać więcej informacji, zobacz parametry zadań w notesie w interfejsie użytkownika zadań albo pole notebook_params w operacji Wyzwolenie nowego uruchomienia zadania (POST /jobs/run-now) w interfejsie API zadań.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("get")

Przykład

W tym przykładzie jest pobierana wartość widżetu o nazwie programowej fruits_combobox.

Pyton
dbutils.widgets.get('fruits_combobox')

# banana
R
dbutils.widgets.get('fruits_combobox')

# [1] "banana"
Skala
dbutils.widgets.get("fruits_combobox")

// res6: String = banana
SQL
SELECT :fruits_combobox

-- banana

W tym przykładzie jest pobierana wartość parametru zadania notatnika o nazwie programowej age. Ten parametr został ustawiony na 35, gdy uruchomiono powiązane zadanie notatnika.

Pyton
dbutils.widgets.get('age')

# 35
R
dbutils.widgets.get('age')

# [1] "35"
Skala
dbutils.widgets.get("age")

// res6: String = 35
SQL
SELECT :age

-- 35

getAll - polecenie (dbutils.widgets.getAll)

getAll: map

Uzyskuje mapowanie wszystkich aktualnych nazw i wartości widżetów. Może to być szczególnie przydatne, aby szybko przekazywać wartości widżetów do zapytania spark.sql().

To polecenie jest dostępne w środowisku Databricks Runtime 13.3 LTS lub nowszym. Jest on dostępny tylko dla języków Python i Scala.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("getAll")

Przykład

W tym przykładzie jest pobierana mapa wartości widżetu i przekazuje ją jako argumenty parametrów w zapytaniu Spark SQL.

Pyton
df = spark.sql("SELECT * FROM table where col1 = :param", dbutils.widgets.getAll())
df.show()

# Query output
Skala
val df = spark.sql("SELECT * FROM table where col1 = :param", dbutils.widgets.getAll())
df.show()

// res6: Query output

polecenie getArgument (dbutils.widgets.getArgument)

getArgument(name: String, optional: String): String

Pobiera bieżącą wartość widżetu z określoną nazwą programową. Jeśli widżet nie istnieje, można zwrócić komunikat opcjonalnie.

Uwaga

To polecenie jest przestarzałe. Zamiast tego użyj dbutils.widgets.get.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("getArgument")

Przykład

W tym przykładzie jest pobierana wartość widżetu o nazwie programowej fruits_combobox. Jeśli ten widżet nie istnieje, zostanie zwrócony komunikat Error: Cannot find fruits combobox .

Pyton
dbutils.widgets.getArgument('fruits_combobox', 'Error: Cannot find fruits combobox')

# Deprecation warning: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
# Out[3]: 'banana'
R
dbutils.widgets.getArgument('fruits_combobox', 'Error: Cannot find fruits combobox')

# Deprecation warning: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
# [1] "banana"
Skala
dbutils.widgets.getArgument("fruits_combobox", "Error: Cannot find fruits combobox")

// command-1234567890123456:1: warning: method getArgument in trait WidgetsUtils is deprecated: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
// dbutils.widgets.getArgument("fruits_combobox", "Error: Cannot find fruits combobox")
//                 ^
// res7: String = banana

komenda multiselect (dbutils.widgets.multiselect)

multiselect(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet wielokrotnego wyboru z określoną nazwą programową, wartością domyślną, wyborami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("multiselect")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet wielokrotnego wyboru o programowej nazwie days_multiselect. Oferuje on opcje Monday poprzez Sunday i jest ustawiony na początkową wartość Tuesday. Ten widżet wielokrotnego wyboru ma etykietę towarzyszącą Days of the Week. Ten przykład kończy się drukowaniem początkowej wartości widżetu wielokrotnego wyboru. Tuesday

Pyton
dbutils.widgets.multiselect(
  name='days_multiselect',
  defaultValue='Tuesday',
  choices=['Monday', 'Tuesday', 'Wednesday', 'Thursday',
    'Friday', 'Saturday', 'Sunday'],
  label='Days of the Week'
)

print(dbutils.widgets.get("days_multiselect"))

# Tuesday
R
dbutils.widgets.multiselect(
  name='days_multiselect',
  defaultValue='Tuesday',
  choices=list('Monday', 'Tuesday', 'Wednesday', 'Thursday',
    'Friday', 'Saturday', 'Sunday'),
  label='Days of the Week'
)

print(dbutils.widgets.get("days_multiselect"))

# [1] "Tuesday"
Skala
dbutils.widgets.multiselect(
  "days_multiselect",
  "Tuesday",
  Array("Monday", "Tuesday", "Wednesday", "Thursday",
    "Friday", "Saturday", "Sunday"),
  "Days of the Week"
)

print(dbutils.widgets.get("days_multiselect"))

// Tuesday
SQL
CREATE WIDGET MULTISELECT days_multiselect DEFAULT "Tuesday" CHOICES SELECT * FROM (VALUES ("Monday"), ("Tuesday"), ("Wednesday"), ("Thursday"), ("Friday"), ("Saturday"), ("Sunday"))

SELECT :days_multiselect

-- Tuesday

usuń polecenie (dbutils.widgets.remove)

remove(name: String): void

Usuwa widżet z określoną nazwą programową.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("remove")

Ważne

Jeśli dodasz polecenie w celu usunięcia widżetu, nie możesz dodać kolejnego polecenia w celu utworzenia widżetu w tej samej komórce. Widżet należy utworzyć w innej komórce.

Przykład

W tym przykładzie widżet zostanie usunięty o programowej nazwie fruits_combobox.

Pyton
dbutils.widgets.remove('fruits_combobox')
R
dbutils.widgets.remove('fruits_combobox')
Skala
dbutils.widgets.remove("fruits_combobox")
SQL
REMOVE WIDGET fruits_combobox

removeAll — polecenie (dbutils.widgets.removeAll)

removeAll: void

Usuwa wszystkie widżety z notesu.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("removeAll")

Ważne

Jeśli dodasz polecenie w celu usunięcia wszystkich widżetów, nie można dodać kolejnego polecenia w celu utworzenia żadnych widżetów w tej samej komórce. Musisz utworzyć widżety w innej komórce.

Przykład

Ten przykład usuwa wszystkie widżety z notesu.

Pyton
dbutils.widgets.removeAll()
R
dbutils.widgets.removeAll()
Skala
dbutils.widgets.removeAll()

polecenie tekstowe (dbutils.widgets.text)

text(name: String, defaultValue: String, label: String): void

Tworzy i wyświetla widżet tekstowy z określoną nazwą programową, wartością domyślną i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("text")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet tekstowy o nazwie your_name_textprogramowej . Jest ona ustawiona na początkową wartość Enter your name. Ten widżet tekstu ma etykietę towarzyszącą Your name. Ten przykład kończy się drukowaniem początkowej wartości widżetu tekstowego . Enter your name

Pyton
dbutils.widgets.text(
  name='your_name_text',
  defaultValue='Enter your name',
  label='Your name'
)

print(dbutils.widgets.get("your_name_text"))

# Enter your name
R
dbutils.widgets.text(
  name='your_name_text',
  defaultValue='Enter your name',
  label='Your name'
)

print(dbutils.widgets.get("your_name_text"))

# [1] "Enter your name"
Skala
dbutils.widgets.text(
  "your_name_text",
  "Enter your name",
  "Your name"
)

print(dbutils.widgets.get("your_name_text"))

// Enter your name
SQL
CREATE WIDGET TEXT your_name_text DEFAULT "Enter your name"

SELECT :your_name_text

-- Enter your name

Biblioteka narzędzi Databricks API

Ważne

Biblioteka interfejsu API narzędzi Databricks (dbutils-api) została oznaczona jako przestarzała. Databricks zaleca użycie jednego z następujących:

Aby przyspieszyć tworzenie aplikacji, warto kompilować, budować i testować aplikacje przed ich wdrożeniem jako zadania produkcyjne. Aby umożliwić kompilowanie z użyciem Databricks Utilities, usługa Databricks udostępnia bibliotekę dbutils-api. Bibliotekę dbutils-api można pobrać ze strony internetowej interfejsu API DBUtils w witrynie internetowej repozytorium Maven lub dołączyć bibliotekę, dodając zależność do pliku kompilacji:

  • SBT (jeśli kontekst wymaga rozwinięcia, należy podać pełne znaczenie)

    libraryDependencies += "com.databricks" % "dbutils-api_TARGET" % "VERSION"
    
  • Maven

    <dependency>
        <groupId>com.databricks</groupId>
        <artifactId>dbutils-api_TARGET</artifactId>
        <version>VERSION</version>
    </dependency>
    
  • Gradle

    compile 'com.databricks:dbutils-api_TARGET:VERSION'
    

Zastąp TARGET żądany element docelowy (na przykład 2.12) i VERSION odpowiednią wersją (na przykład 0.0.5). Aby uzyskać listę dostępnych obiektów docelowych i wersji, odwiedź stronę DBUtils API w witrynie Maven Repository.

Po skompilowaniu aplikacji z użyciem tej biblioteki, możesz wdrożyć aplikację.

Ważne

Biblioteka dbutils-api pozwala tylko lokalnie skompilować aplikację, która używa dbutils, ale nie uruchomić jej. Aby uruchomić aplikację, należy ją wdrożyć w usłudze Azure Databricks.

Ograniczenia

Wywoływanie dbutils wewnątrz funkcji wykonawczych może spowodować nieoczekiwane wyniki lub błędy.

Jeśli musisz uruchomić operacje systemu plików na wykonawcach przy użyciu dbutils, zapoznaj się z tematem Zrównoleglij operacje systemu plików.

Aby uzyskać informacje o funkcjach wykonawczych, zobacz Omówienie trybu klastra w witrynie internetowej platformy Apache Spark.