Início Rápido: Detectando entidades nomeadas (NER)
Documentação de referência | Mais amostras | Pacote (NuGet) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo NER (Reconhecimento de Entidade Nomeada) com a biblioteca de clientes para .NET. No exemplo a seguir, você criará um aplicativo C# que pode identificar entidades reconhecidas no texto.
Dica
Você pode usar o Azure AI Foundry para experimentar a sumarização sem precisar escrever código.
- Assinatura do Azure – Criar uma gratuitamente
- O IDE do Visual Studio
Será necessário implantar um recurso do Azure para usar o exemplo de código abaixo. Esse recurso conterá uma chave e um ponto de extremidade que você usará para autenticar as chamadas de API enviadas para o serviço de linguagem.
Use o link a seguir para criar um recurso de linguagem usando o portal do Azure. Você precisará se conectar usando sua assinatura do Azure.
Na tela Selecionar recursos adicionais que aparece, selecione Continuar a criar seu recurso.
Na tela Criar linguagem, forneça as seguintes informações:
Detalhe Descrição Subscription A conta de assinatura à qual seu recurso será associado. Selecione a assinatura do Azure no menu suspenso. Resource group Um grupo de recursos é um contêiner que armazena os recursos criados por você. Selecione Criar novo para criar um novo grupo de recursos. Região O local do recurso de Linguagem. Diferentes regiões podem apresentar latência, dependendo do seu local físico, mas não impactam sobre a disponibilidade de runtime do seu recurso. Neste início rápido, selecione uma região disponível perto de você ou escolha Leste dos EUA. Nome O nome para o recurso de linguagem. Esse nome também será usado para criar uma URL de ponto de extremidade e seus aplicativos o usarão para enviar solicitações de API. Tipo de preço O tipo de preço do recurso de Linguagem. É possível usar o nível Gratuito F0 para experimentar o serviço e atualizar mais tarde para um nível pago para produção. Verifique se a caixa de seleção Aviso de IA Responsável está marcada.
Selecione Examinar + Criar na parte inferior da página.
Na tela exibida, verifique se a validação foi aprovada e se você inseriu suas informações corretamente. Em seguida, selecione Criar.
Em seguida, você precisará da chave e do ponto de extremidade do recurso para conectar seu aplicativo à API. Você vai colar a chave e o ponto de extremidade no código mais adiante no guia de início rápido.
Após a implantação bem-sucedida do recurso de linguagem, clique no botão Acessar recurso em Próximas etapas.
Na tela do recurso, selecione Chaves e ponto de extremidade no menu de navegação à esquerda. Você usará uma das chaves e o ponto de extremidade nas etapas abaixo.
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Se você usar uma chave de API, armazene-a com segurança em outro lugar, como no Azure Key Vault. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
export LANGUAGE_KEY=your-key
export LANGUAGE_ENDPOINT=your-endpoint
Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc
na janela do console para que as alterações entrem em vigor.
Usando o IDE do Visual Studio, crie um aplicativo de console do .NET Core. Isso criará um projeto "Olá, Mundo" com um arquivo de origem C#: program.cs.
Instale a biblioteca de cliente clicando com o botão direito do mouse na solução no Gerenciador de Soluções e selecionando Gerenciar Pacotes do NuGet. No gerenciador de pacotes que é aberto, selecione Procurar e pesquise por Azure.AI.TextAnalytics
. Selecione a versão 5.2.0
e, em seguida, Instalar. Você também pode usar o Console do Gerenciador de Pacotes.
Copie o seguinte código para o seu arquivo program.cs e execute o código.
using Azure;
using System;
using Azure.AI.TextAnalytics;
namespace Example
{
class Program
{
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");
private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
private static readonly Uri endpoint = new Uri(languageEndpoint);
// Example method for extracting named entities from text
static void EntityRecognitionExample(TextAnalyticsClient client)
{
var response = client.RecognizeEntities("I had a wonderful trip to Seattle last week.");
Console.WriteLine("Named Entities:");
foreach (var entity in response.Value)
{
Console.WriteLine($"\tText: {entity.Text},\tCategory: {entity.Category},\tSub-Category: {entity.SubCategory}");
Console.WriteLine($"\t\tScore: {entity.ConfidenceScore:F2},\tLength: {entity.Length},\tOffset: {entity.Offset}\n");
}
}
static void Main(string[] args)
{
var client = new TextAnalyticsClient(endpoint, credentials);
EntityRecognitionExample(client);
Console.Write("Press any key to exit.");
Console.ReadKey();
}
}
}
Named Entities:
Text: trip, Category: Event, Sub-Category:
Score: 0.74, Length: 4, Offset: 18
Text: Seattle, Category: Location, Sub-Category: GPE
Score: 1.00, Length: 7, Offset: 26
Text: last week, Category: DateTime, Sub-Category: DateRange
Score: 0.80, Length: 9, Offset: 34
Documentação de referência | Mais amostras | Pacote (Maven) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo NER (Reconhecimento de Entidade Nomeada) com a biblioteca de clientes para Java. No exemplo a seguir, você criará um aplicativo Java que pode identificar entidades reconhecidas no texto.
- Assinatura do Azure – Criar uma gratuitamente
- JDK (Java Development Kit) com a versão 8 ou superior
Será necessário implantar um recurso do Azure para usar o exemplo de código abaixo. Esse recurso conterá uma chave e um ponto de extremidade que você usará para autenticar as chamadas de API enviadas para o serviço de linguagem.
Use o link a seguir para criar um recurso de linguagem usando o portal do Azure. Você precisará se conectar usando sua assinatura do Azure.
Na tela Selecionar recursos adicionais que aparece, selecione Continuar a criar seu recurso.
Na tela Criar linguagem, forneça as seguintes informações:
Detalhe Descrição Subscription A conta de assinatura à qual seu recurso será associado. Selecione a assinatura do Azure no menu suspenso. Resource group Um grupo de recursos é um contêiner que armazena os recursos criados por você. Selecione Criar novo para criar um novo grupo de recursos. Região O local do recurso de Linguagem. Diferentes regiões podem apresentar latência, dependendo do seu local físico, mas não impactam sobre a disponibilidade de runtime do seu recurso. Neste início rápido, selecione uma região disponível perto de você ou escolha Leste dos EUA. Nome O nome para o recurso de linguagem. Esse nome também será usado para criar uma URL de ponto de extremidade e seus aplicativos o usarão para enviar solicitações de API. Tipo de preço O tipo de preço do recurso de Linguagem. É possível usar o nível Gratuito F0 para experimentar o serviço e atualizar mais tarde para um nível pago para produção. Verifique se a caixa de seleção Aviso de IA Responsável está marcada.
Selecione Examinar + Criar na parte inferior da página.
Na tela exibida, verifique se a validação foi aprovada e se você inseriu suas informações corretamente. Em seguida, selecione Criar.
Em seguida, você precisará da chave e do ponto de extremidade do recurso para conectar seu aplicativo à API. Você vai colar a chave e o ponto de extremidade no código mais adiante no guia de início rápido.
Após a implantação bem-sucedida do recurso de linguagem, clique no botão Acessar recurso em Próximas etapas.
Na tela do recurso, selecione Chaves e ponto de extremidade no menu de navegação à esquerda. Você usará uma das chaves e o ponto de extremidade nas etapas abaixo.
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Se você usar uma chave de API, armazene-a com segurança em outro lugar, como no Azure Key Vault. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
export LANGUAGE_KEY=your-key
export LANGUAGE_ENDPOINT=your-endpoint
Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc
na janela do console para que as alterações entrem em vigor.
Crie um projeto Maven no IDE ou no ambiente de desenvolvimento de sua preferência. Em seguida, adicione a dependência a seguir ao arquivo pom.xml do projeto. Você pode encontrar a sintaxe de implementação para outras ferramentas de build online.
<dependencies>
<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-ai-textanalytics</artifactId>
<version>5.2.0</version>
</dependency>
</dependencies>
Crie um arquivo Java chamado Example.java
. Abra o arquivo e copie o código abaixo. Depois, execute o código.
import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;
public class Example {
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
private static String languageKey = System.getenv("LANGUAGE_KEY");
private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");
public static void main(String[] args) {
TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
recognizeEntitiesExample(client);
}
// Method to authenticate the client object with your key and endpoint
static TextAnalyticsClient authenticateClient(String key, String endpoint) {
return new TextAnalyticsClientBuilder()
.credential(new AzureKeyCredential(key))
.endpoint(endpoint)
.buildClient();
}
// Example method for recognizing entities in text
static void recognizeEntitiesExample(TextAnalyticsClient client)
{
// The text that needs to be analyzed.
String text = "I had a wonderful trip to Seattle last week.";
for (CategorizedEntity entity : client.recognizeEntities(text)) {
System.out.printf(
"Recognized entity: %s, entity category: %s, entity sub-category: %s, score: %s, offset: %s, length: %s.%n",
entity.getText(),
entity.getCategory(),
entity.getSubcategory(),
entity.getConfidenceScore(),
entity.getOffset(),
entity.getLength());
}
}
}
Recognized entity: trip, entity category: Event, entity sub-category: null, score: 0.74, offset: 18, length: 4.
Recognized entity: Seattle, entity category: Location, entity sub-category: GPE, score: 1.0, offset: 26, length: 7.
Recognized entity: last week, entity category: DateTime, entity sub-category: DateRange, score: 0.8, offset: 34, length: 9.
Documentação de referência do | Mais amostras | Pacote (npm) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo NER (Reconhecimento de Entidade Nomeada) com a biblioteca de clientes para Node.js. No exemplo a seguir, você criará um aplicativo JavaScript que pode identificar entidades reconhecidas no texto.
- Assinatura do Azure – Criar uma gratuitamente
- Node.js v14 LTS ou posterior
Será necessário implantar um recurso do Azure para usar o exemplo de código abaixo. Esse recurso conterá uma chave e um ponto de extremidade que você usará para autenticar as chamadas de API enviadas para o serviço de linguagem.
Use o link a seguir para criar um recurso de linguagem usando o portal do Azure. Você precisará se conectar usando sua assinatura do Azure.
Na tela Selecionar recursos adicionais que aparece, selecione Continuar a criar seu recurso.
Na tela Criar linguagem, forneça as seguintes informações:
Detalhe Descrição Subscription A conta de assinatura à qual seu recurso será associado. Selecione a assinatura do Azure no menu suspenso. Resource group Um grupo de recursos é um contêiner que armazena os recursos criados por você. Selecione Criar novo para criar um novo grupo de recursos. Região O local do recurso de Linguagem. Diferentes regiões podem apresentar latência, dependendo do seu local físico, mas não impactam sobre a disponibilidade de runtime do seu recurso. Neste início rápido, selecione uma região disponível perto de você ou escolha Leste dos EUA. Nome O nome para o recurso de linguagem. Esse nome também será usado para criar uma URL de ponto de extremidade e seus aplicativos o usarão para enviar solicitações de API. Tipo de preço O tipo de preço do recurso de Linguagem. É possível usar o nível Gratuito F0 para experimentar o serviço e atualizar mais tarde para um nível pago para produção. Verifique se a caixa de seleção Aviso de IA Responsável está marcada.
Selecione Examinar + Criar na parte inferior da página.
Na tela exibida, verifique se a validação foi aprovada e se você inseriu suas informações corretamente. Em seguida, selecione Criar.
Em seguida, você precisará da chave e do ponto de extremidade do recurso para conectar seu aplicativo à API. Você vai colar a chave e o ponto de extremidade no código mais adiante no guia de início rápido.
Após a implantação bem-sucedida do recurso de linguagem, clique no botão Acessar recurso em Próximas etapas.
Na tela do recurso, selecione Chaves e ponto de extremidade no menu de navegação à esquerda. Você usará uma das chaves e o ponto de extremidade nas etapas abaixo.
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Se você usar uma chave de API, armazene-a com segurança em outro lugar, como no Azure Key Vault. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
export LANGUAGE_KEY=your-key
export LANGUAGE_ENDPOINT=your-endpoint
Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc
na janela do console para que as alterações entrem em vigor.
Em uma janela de console (como cmd, PowerShell ou Bash), crie um novo diretório para seu aplicativo e navegue até ele.
mkdir myapp
cd myapp
Execute o comando npm init
para criar um aplicativo do Node com um arquivo package.json
.
npm init
Instale o pacote npm:
npm install @azure/ai-language-text
Abra o arquivo e copie o código abaixo. Depois, execute o código.
"use strict";
const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;
//an example document for entity recognition
const documents = [ "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800"];
//example of how to use the client library to recognize entities in a document.
async function main() {
console.log("== NER sample ==");
const client = new TextAnalysisClient(endpoint, new AzureKeyCredential(key));
const results = await client.analyze("EntityRecognition", documents);
for (const result of results) {
console.log(`- Document ${result.id}`);
if (!result.error) {
console.log("\tRecognized Entities:");
for (const entity of result.entities) {
console.log(`\t- Entity ${entity.text} of type ${entity.category}`);
}
} else console.error("\tError:", result.error);
}
}
//call the main function
main().catch((err) => {
console.error("The sample encountered an error:", err);
});
Document ID: 0
Name: Microsoft Category: Organization Subcategory: N/A
Score: 0.29
Name: Bill Gates Category: Person Subcategory: N/A
Score: 0.78
Name: Paul Allen Category: Person Subcategory: N/A
Score: 0.82
Name: April 4, 1975 Category: DateTime Subcategory: Date
Score: 0.8
Name: 8800 Category: Quantity Subcategory: Number
Score: 0.8
Document ID: 1
Name: 21 Category: Quantity Subcategory: Number
Score: 0.8
Name: Seattle Category: Location Subcategory: GPE
Score: 0.25
Documentação de referência | Mais amostras | Pacote (PyPi) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo NER (Reconhecimento de Entidade Nomeada) com a biblioteca de clientes para Python. No exemplo a seguir, você criará um aplicativo Python que pode identificar entidades reconhecidas no texto.
- Assinatura do Azure – Criar uma gratuitamente
- Python 3.8 ou posterior
Depois de instalar o Python, você pode instalar a biblioteca de clientes com:
pip install azure-ai-textanalytics==5.2.0
Crie um novo arquivo Python e copie o código abaixo. Depois, execute o código.
# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
# Authenticate the client using your key and endpoint
def authenticate_client():
ta_credential = AzureKeyCredential(language_key)
text_analytics_client = TextAnalyticsClient(
endpoint=language_endpoint,
credential=ta_credential)
return text_analytics_client
client = authenticate_client()
# Example function for recognizing entities from text
def entity_recognition_example(client):
try:
documents = ["I had a wonderful trip to Seattle last week."]
result = client.recognize_entities(documents = documents)[0]
print("Named Entities:\n")
for entity in result.entities:
print("\tText: \t", entity.text, "\tCategory: \t", entity.category, "\tSubCategory: \t", entity.subcategory,
"\n\tConfidence Score: \t", round(entity.confidence_score, 2), "\tLength: \t", entity.length, "\tOffset: \t", entity.offset, "\n")
except Exception as err:
print("Encountered exception. {}".format(err))
entity_recognition_example(client)
Named Entities:
Text: trip Category: Event SubCategory: None
Confidence Score: 0.74 Length: 4 Offset: 18
Text: Seattle Category: Location SubCategory: GPE
Confidence Score: 1.0 Length: 7 Offset: 26
Text: last week Category: DateTime SubCategory: DateRange
Confidence Score: 0.8 Length: 9 Offset: 34
Use este início rápido para enviar o NER (Reconhecimento de Entidade Nomeada) usando a API REST. No exemplo a seguir, você usará o cURL para identificar entidades reconhecidas no texto.
- Assinatura do Azure – Criar uma gratuitamente
Será necessário implantar um recurso do Azure para usar o exemplo de código abaixo. Esse recurso conterá uma chave e um ponto de extremidade que você usará para autenticar as chamadas de API enviadas para o serviço de linguagem.
Use o link a seguir para criar um recurso de linguagem usando o portal do Azure. Você precisará se conectar usando sua assinatura do Azure.
Na tela Selecionar recursos adicionais que aparece, selecione Continuar a criar seu recurso.
Na tela Criar linguagem, forneça as seguintes informações:
Detalhe Descrição Subscription A conta de assinatura à qual seu recurso será associado. Selecione a assinatura do Azure no menu suspenso. Resource group Um grupo de recursos é um contêiner que armazena os recursos criados por você. Selecione Criar novo para criar um novo grupo de recursos. Região O local do recurso de Linguagem. Diferentes regiões podem apresentar latência, dependendo do seu local físico, mas não impactam sobre a disponibilidade de runtime do seu recurso. Neste início rápido, selecione uma região disponível perto de você ou escolha Leste dos EUA. Nome O nome para o recurso de linguagem. Esse nome também será usado para criar uma URL de ponto de extremidade e seus aplicativos o usarão para enviar solicitações de API. Tipo de preço O tipo de preço do recurso de Linguagem. É possível usar o nível Gratuito F0 para experimentar o serviço e atualizar mais tarde para um nível pago para produção. Verifique se a caixa de seleção Aviso de IA Responsável está marcada.
Selecione Examinar + Criar na parte inferior da página.
Na tela exibida, verifique se a validação foi aprovada e se você inseriu suas informações corretamente. Em seguida, selecione Criar.
Em seguida, você precisará da chave e do ponto de extremidade do recurso para conectar seu aplicativo à API. Você vai colar a chave e o ponto de extremidade no código mais adiante no guia de início rápido.
Após a implantação bem-sucedida do recurso de linguagem, clique no botão Acessar recurso em Próximas etapas.
Na tela do recurso, selecione Chaves e ponto de extremidade no menu de navegação à esquerda. Você usará uma das chaves e o ponto de extremidade nas etapas abaixo.
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Se você usar uma chave de API, armazene-a com segurança em outro lugar, como no Azure Key Vault. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
export LANGUAGE_KEY=your-key
export LANGUAGE_ENDPOINT=your-endpoint
Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc
na janela do console para que as alterações entrem em vigor.
Em um editor de código, crie um arquivo chamado test_ner_payload.json
e copie o exemplo JSON a seguir. Esta solicitação de exemplo será enviada para a API na próxima etapa.
{
"kind": "EntityRecognition",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language": "en",
"text": "I had a wonderful trip to Seattle last week."
}
]
}
}
Salve test_ner_payload.json
em algum lugar no seu computador. Por exemplo, sua área de trabalho.
Use os comandos a seguir para enviar a solicitação de API usando o programa que você está usando. Copie o comando para o terminal e execute-o.
parâmetro | Descrição |
---|---|
-X POST <endpoint> |
Especifica o ponto de extremidade para acessar a API. |
-H Content-Type: application/json |
Tipo de conteúdo para enviar dados JSON. |
-H "Ocp-Apim-Subscription-Key:<key> |
Especifica a chave para acessar a API. |
-d <documents> |
JSON contendo os documentos que você deseja enviar. |
Use os comandos a seguir para enviar a solicitação de API usando o programa que você está usando. Substitua /home/mydir/test_ner_payload.json
pela localização do arquivo da solicitação JSON de exemplo criado na etapa anterior.
curl -X POST $LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: $LANGUAGE_KEY" \
-d "@/home/mydir/test_ner_payload.json"
Observação
- A API em disponibilidade geral e a API de visualização atual têm formatos de resposta diferentes. Consulte o artigo de mapeamento de API em disponibilidade para API de visualização.
- A API de visualização está disponível a partir da versão de API
2023-04-15-preview
.
{
"kind": "EntityRecognitionResults",
"results": {
"documents": [{
"id": "1",
"entities": [{
"text": "trip",
"category": "Event",
"offset": 18,
"length": 4,
"confidenceScore": 0.74
}, {
"text": "Seattle",
"category": "Location",
"subcategory": "GPE",
"offset": 26,
"length": 7,
"confidenceScore": 1.0
}, {
"text": "last week",
"category": "DateTime",
"subcategory": "DateRange",
"offset": 34,
"length": 9,
"confidenceScore": 0.8
}],
"warnings": []
}],
"errors": [],
"modelVersion": "2021-06-01"
}
}
Se quiser limpar e remover uma assinatura dos Serviços de IA do Azure, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.