Ler em inglês

Partilhar via


LINESTX

Aplica-se a:Coluna calculadaTabela calculadaMedidaCálculo visual

Usa o método Mínimos Quadrados para calcular uma linha reta que melhor se ajusta aos dados fornecidos e, em seguida, retorna uma tabela descrevendo a linha. Os dados resultam de expressões avaliadas para cada linha de uma tabela. A equação para a linha é da forma: y = Inclinação1*x1 + Inclinação2*x2 + ... + Intercetar.

Sintaxe

LINESTX ( <table>, <expressionY>, <expressionX>[, …][, <const>] )

Parâmetros

Vigência Definição
table A tabela que contém as linhas para as quais as expressões serão avaliadas.
expressionY A expressão a ser avaliada para cada linha da tabela, para obter os valores y conhecidos. Deve ter tipo escalar.
expressionX As expressões a serem avaliadas para cada linha da tabela, para obter os valores x conhecidos. Deve ter tipo escalar. Pelo menos um deve ser fornecido.
const (Opcional) Um valor de constante que especifica se a constante Intercept deve ser forçada a igual a 0.Se ou omitido, o valor Intercept é calculado normalmente; Se , o valor Intercept será definido como zero.

Valor de retorno

Uma tabela de linha única descrevendo a linha, além de estatísticas adicionais. Estas são as colunas disponíveis:

  • Slope1, Slope2, ..., SlopeN: os coeficientes correspondentes a cada valor x;
  • Intercept: valor de intercetação;
  • StandardErrorSlope1, StandardErrorSlope2, ..., StandardErrorSlopeN: os valores de erro padrão para os coeficientes Slope1, Slope2, ..., SlopeN;
  • StandardErrorIntercept: o valor de erro padrão para a constante Intercept;
  • CoefficientOfDetermination: o coeficiente de determinação (r²). Compara valores y estimados e reais, e varia em valor de 0 a 1: quanto maior o valor, maior a correlação na amostra;
  • StandardError: o erro padrão para a estimativa y;
  • FStatistic: a estatística F, ou o valor F-observado. Use a estatística F para determinar se a relação observada entre as variáveis dependentes e independentes ocorre por acaso;
  • DegreesOfFreedom: os graus de liberdade. Use esse valor para ajudá-lo a encontrar valores críticos F em uma tabela estatística e determinar um nível de confiança para o modelo;
  • RegressionSumOfSquares: a soma de quadrados de regressão;
  • ResidualSumOfSquares: a soma residual dos quadrados.

Exemplo 1

A seguinte consulta DAX:

DEFINE VAR TotalSalesByRegion = SUMMARIZECOLUMNS(
    'Sales Territory'[Sales Territory Key],
    'Sales Territory'[Population],
    "Total Sales", SUM(Sales[Sales Amount])
)
EVALUATE LINESTX(
    'TotalSalesByRegion',
    [Total Sales],
    [Population]
)

Devolve uma tabela de linha única com dez colunas:

Inclinação1 Intercetação StandardErrorSlope1 StandardErrorIntercept CoefficientOfDetermination
6.42271517588 -410592.76216 0.24959467764561 307826.343996223 0.973535860750193
Erro padrão FStatistic Graus de Liberdade RegressãoSomaDosQuadrados ResidualSumOfSquares
630758.1747292 662.165707642 18 263446517001130 7161405749781.07
  • Slope1 e Intercept: os coeficientes do modelo linear calculado;
  • StandardErrorSlope1 e StandardErrorIntercept: os valores de erro padrão para os coeficientes acima;
  • CoefficientOfDetermination, StandardError, FStatistic, DegreesOfFreedom, RegressionSumOfSquares e ResidualSumOfSquares: estatísticas de regressão sobre o modelo.

Para um determinado território de vendas, este modelo prevê as vendas totais pela seguinte fórmula:

Total Sales = Slope1 * Population + Intercept

Exemplo 2

A seguinte consulta DAX:

DEFINE VAR TotalSalesByCustomer = SUMMARIZECOLUMNS(
    'Customer'[Customer ID],
    'Customer'[Age],
    'Customer'[NumOfChildren],
    "Total Sales", SUM(Sales[Sales Amount])
)
EVALUATE LINESTX(
    'TotalSalesByCustomer',
    [Total Sales],
    [Age],
    [NumOfChildren]
)

Devolve uma tabela de linha única com doze colunas:

Inclinação1 Inclinação2 Intercetação StandardErrorSlope1
69.0435458093763 33.005949841721 -871.118539339539 0.872588875481658
StandardErrorSlope2 StandardErrorIntercept CoefficientOfDetermination Erro padrão
6.21158863903435 26.726292527427 0.984892920482022 68.5715034014342
FStatistic Graus de Liberdade RegressãoSomaDosQuadrados ResidualSumOfSquares
3161.91535144391 97 29734974.9782379 456098.954637092

Para um determinado cliente, este modelo prevê as vendas totais pela seguinte fórmula:

Total Sales = Slope1 * Age + Slope2 * NumOfChildren + Intercept

LINEST
Funções estatísticas