TransformExtensionsCatalog.Concatenate Méthode

Définition

Créez un ColumnConcatenatingEstimator, qui concaténe une ou plusieurs colonnes d’entrée dans une nouvelle colonne de sortie.

public static Microsoft.ML.Transforms.ColumnConcatenatingEstimator Concatenate (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, params string[] inputColumnNames);

Paramètres

catalog
TransformsCatalog

Catalogue de la transformation.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnNames. Le type de données de cette colonne sera un vecteur du type de données des colonnes d’entrée.

inputColumnNames
String[]

Nom des colonnes à concaténer. Cet estimateur fonctionne sur n’importe quel type de données, sauf le type de clé. Si plusieurs colonnes sont fournies, elles doivent toutes avoir le même type de données.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class Concatenate
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<InputData>()
            {
                new InputData(){ Feature1 = 0.1f, Feature2 = new[]{ 1.1f, 2.1f,
                    3.1f }, Feature3 = 1 },

                new InputData(){ Feature1 = 0.2f, Feature2 = new[]{ 1.2f, 2.2f,
                    3.2f }, Feature3 = 2 },

                new InputData(){ Feature1 = 0.3f, Feature2 = new[]{ 1.3f, 2.3f,
                    3.3f }, Feature3 = 3 },

                new InputData(){ Feature1 = 0.4f, Feature2 = new[]{ 1.4f, 2.4f,
                    3.4f }, Feature3 = 4 },

                new InputData(){ Feature1 = 0.5f, Feature2 = new[]{ 1.5f, 2.5f,
                    3.5f }, Feature3 = 5 },

                new InputData(){ Feature1 = 0.6f, Feature2 = new[]{ 1.6f, 2.6f,
                    3.6f }, Feature3 = 6 },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // A pipeline for concatenating the "Feature1", "Feature2" and
            // "Feature3" columns together into a vector that will be the Features
            // column. Concatenation is necessary because trainers take feature
            // vectors as inputs.
            //
            // Please note that the "Feature3" column is converted from int32 to
            // float using the ConvertType. The Concatenate requires all columns to
            // be of same type.
            var pipeline = mlContext.Transforms.Conversion.ConvertType("Feature3",
                outputKind: DataKind.Single)
                .Append(mlContext.Transforms.Concatenate("Features", new[]
                    { "Feature1", "Feature2", "Feature3" }));

            // The transformed data.
            var transformedData = pipeline.Fit(dataview).Transform(dataview);

            // Now let's take a look at what this concatenation did.
            // We can extract the newly created column as an IEnumerable of
            // TransformedData.
            var featuresColumn = mlContext.Data.CreateEnumerable<TransformedData>(
                transformedData, reuseRowObject: false);

            // And we can write out a few rows
            Console.WriteLine($"Features column obtained post-transformation.");
            foreach (var featureRow in featuresColumn)
                Console.WriteLine(string.Join(" ", featureRow.Features));

            // Expected output:
            //  Features column obtained post-transformation.
            //  0.1 1.1 2.1 3.1 1
            //  0.2 1.2 2.2 3.2 2
            //  0.3 1.3 2.3 3.3 3
            //  0.4 1.4 2.4 3.4 4
            //  0.5 1.5 2.5 3.5 5
            //  0.6 1.6 2.6 3.6 6
        }

        private class InputData
        {
            public float Feature1;
            [VectorType(3)]
            public float[] Feature2;
            public int Feature3;
        }

        private sealed class TransformedData
        {
            public float[] Features { get; set; }
        }
    }
}

S’applique à

Produit Versions
ML.NET 1.0.0, 1.1.0, 1.2.0, 1.3.1, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 2.0.0, 3.0.0