TransformExtensionsCatalog.Concatenate Méthode
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Créez un ColumnConcatenatingEstimator, qui concaténe une ou plusieurs colonnes d’entrée dans une nouvelle colonne de sortie.
public static Microsoft.ML.Transforms.ColumnConcatenatingEstimator Concatenate (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, params string[] inputColumnNames);
static member Concatenate : Microsoft.ML.TransformsCatalog * string * string[] -> Microsoft.ML.Transforms.ColumnConcatenatingEstimator
<Extension()>
Public Function Concatenate (catalog As TransformsCatalog, outputColumnName As String, ParamArray inputColumnNames As String()) As ColumnConcatenatingEstimator
- catalog
- TransformsCatalog
Catalogue de la transformation.
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnNames
.
Le type de données de cette colonne sera un vecteur du type de données des colonnes d’entrée.
- inputColumnNames
- String[]
Nom des colonnes à concaténer. Cet estimateur fonctionne sur n’importe quel type de données, sauf le type de clé. Si plusieurs colonnes sont fournies, elles doivent toutes avoir le même type de données.
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class Concatenate
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<InputData>()
{
new InputData(){ Feature1 = 0.1f, Feature2 = new[]{ 1.1f, 2.1f,
3.1f }, Feature3 = 1 },
new InputData(){ Feature1 = 0.2f, Feature2 = new[]{ 1.2f, 2.2f,
3.2f }, Feature3 = 2 },
new InputData(){ Feature1 = 0.3f, Feature2 = new[]{ 1.3f, 2.3f,
3.3f }, Feature3 = 3 },
new InputData(){ Feature1 = 0.4f, Feature2 = new[]{ 1.4f, 2.4f,
3.4f }, Feature3 = 4 },
new InputData(){ Feature1 = 0.5f, Feature2 = new[]{ 1.5f, 2.5f,
3.5f }, Feature3 = 5 },
new InputData(){ Feature1 = 0.6f, Feature2 = new[]{ 1.6f, 2.6f,
3.6f }, Feature3 = 6 },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline for concatenating the "Feature1", "Feature2" and
// "Feature3" columns together into a vector that will be the Features
// column. Concatenation is necessary because trainers take feature
// vectors as inputs.
//
// Please note that the "Feature3" column is converted from int32 to
// float using the ConvertType. The Concatenate requires all columns to
// be of same type.
var pipeline = mlContext.Transforms.Conversion.ConvertType("Feature3",
outputKind: DataKind.Single)
.Append(mlContext.Transforms.Concatenate("Features", new[]
{ "Feature1", "Feature2", "Feature3" }));
// The transformed data.
var transformedData = pipeline.Fit(dataview).Transform(dataview);
// Now let's take a look at what this concatenation did.
// We can extract the newly created column as an IEnumerable of
// TransformedData.
var featuresColumn = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, reuseRowObject: false);
// And we can write out a few rows
Console.WriteLine($"Features column obtained post-transformation.");
foreach (var featureRow in featuresColumn)
Console.WriteLine(string.Join(" ", featureRow.Features));
// Expected output:
// Features column obtained post-transformation.
// 0.1 1.1 2.1 3.1 1
// 0.2 1.2 2.2 3.2 2
// 0.3 1.3 2.3 3.3 3
// 0.4 1.4 2.4 3.4 4
// 0.5 1.5 2.5 3.5 5
// 0.6 1.6 2.6 3.6 6
}
private class InputData
{
public float Feature1;
[VectorType(3)]
public float[] Feature2;
public int Feature3;
}
private sealed class TransformedData
{
public float[] Features { get; set; }
}
}
}
Produit | Versions |
---|---|
ML.NET | 1.0.0, 1.1.0, 1.2.0, 1.3.1, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 2.0.0, 3.0.0 |