Training
Module
Control variable scope and logic using code blocks in C# - Training
Use code blocks with more confidence, understanding how they impact the visibility and accessibility of both higher and lower-level constructs in your code.
This browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
This article provides supplementary remarks to the reference documentation for this API.
The primary use of the IDisposable interface is to release unmanaged resources. The garbage collector automatically releases the memory allocated to a managed object when that object is no longer used. However, it's not possible to predict when garbage collection will occur. Furthermore, the garbage collector has no knowledge of unmanaged resources such as window handles, or open files and streams.
Use the Dispose method of this interface to explicitly release unmanaged resources in conjunction with the garbage collector. The consumer of an object can call this method when the object is no longer needed.
Warning
It is a breaking change to add the IDisposable interface to an existing class. Because pre-existing consumers of your type cannot call Dispose, you cannot be certain that unmanaged resources held by your type will be released.
Because the IDisposable.Dispose implementation is called by the consumer of a type when the resources owned by an instance are no longer needed, you should either wrap the managed object in a SafeHandle (the recommended alternative), or you should override Object.Finalize to free unmanaged resources in the event that the consumer forgets to call Dispose.
Important
In .NET Framework, the C++ compiler supports deterministic disposal of resources and does not allow direct implementation of the Dispose method.
For a detailed discussion about how this interface and the Object.Finalize method are used, see the Garbage Collection and Implementing a Dispose Method topics.
If your app simply uses an object that implements the IDisposable interface, you should call the object's IDisposable.Dispose implementation when you are finished using it. Depending on your programming language, you can do this in one of two ways:
using
statement in C# and Visual Basic, and the use
statement or using
function in F#.try
/finally
block.Note
Documentation for types that implement IDisposable note that fact and include a reminder to call its Dispose implementation.
If your language supports a construct such as the using statement in C#, the Using statement in Visual Basic, or the use statement in F#, you can use it instead of explicitly calling IDisposable.Dispose yourself. The following example uses this approach in defining a WordCount
class that preserves information about a file and the number of words in it.
using System;
using System.IO;
using System.Text.RegularExpressions;
public class WordCount
{
private String filename = String.Empty;
private int nWords = 0;
private String pattern = @"\b\w+\b";
public WordCount(string filename)
{
if (!File.Exists(filename))
throw new FileNotFoundException("The file does not exist.");
this.filename = filename;
string txt = String.Empty;
using (StreamReader sr = new StreamReader(filename))
{
txt = sr.ReadToEnd();
}
nWords = Regex.Matches(txt, pattern).Count;
}
public string FullName
{ get { return filename; } }
public string Name
{ get { return Path.GetFileName(filename); } }
public int Count
{ get { return nWords; } }
}
open System.IO
open System.Text.RegularExpressions
type WordCount(filename) =
let txt =
if File.Exists filename |> not then
raise (FileNotFoundException "The file does not exist.")
use sr = new StreamReader(filename)
sr.ReadToEnd()
let pattern = @"\b\w+\b"
let nWords = Regex.Matches(txt, pattern).Count
member _.FullName = filename
member _.Name = Path.GetFileName filename
member _.Count = nWords
Imports System.IO
Imports System.Text.RegularExpressions
Public Class WordCount
Private filename As String
Private nWords As Integer
Private pattern As String = "\b\w+\b"
Public Sub New(filename As String)
If Not File.Exists(filename) Then
Throw New FileNotFoundException("The file does not exist.")
End If
Me.filename = filename
Dim txt As String = String.Empty
Using sr As New StreamReader(filename)
txt = sr.ReadToEnd()
End Using
nWords = Regex.Matches(txt, pattern).Count
End Sub
Public ReadOnly Property FullName As String
Get
Return filename
End Get
End Property
Public ReadOnly Property Name As String
Get
Return Path.GetFileName(filename)
End Get
End Property
Public ReadOnly Property Count As Integer
Get
Return nWords
End Get
End Property
End Class
The using
statement (use
expression in F#) is actually a syntactic convenience. At compile time, the language compiler implements the intermediate language (IL) for a try
/finally
block.
For more information about the using
statement, see the Using Statement or using Statement topics.
If your programming language does not support a construct like the using
statement in C# or Visual Basic, or the use
statement in F#, or if you prefer not to use it, you can call the IDisposable.Dispose implementation from the finally
block of a try
/finally
statement. The following example replaces the using
block in the previous example with a try
/finally
block.
using System;
using System.IO;
using System.Text.RegularExpressions;
public class WordCount2
{
private String filename = String.Empty;
private int nWords = 0;
private String pattern = @"\b\w+\b";
public WordCount2(string filename)
{
if (!File.Exists(filename))
throw new FileNotFoundException("The file does not exist.");
this.filename = filename;
string txt = String.Empty;
StreamReader? sr = null;
try
{
sr = new StreamReader(filename);
txt = sr.ReadToEnd();
}
finally
{
if (sr != null) sr.Dispose();
}
nWords = Regex.Matches(txt, pattern).Count;
}
public string FullName
{ get { return filename; } }
public string Name
{ get { return Path.GetFileName(filename); } }
public int Count
{ get { return nWords; } }
}
open System.IO
open System.Text.RegularExpressions
type WordCount2(filename) =
let txt =
if File.Exists filename |> not then
raise (FileNotFoundException "The file does not exist.")
let sr = new StreamReader(filename)
try
sr.ReadToEnd()
finally
sr.Dispose()
let pattern = @"\b\w+\b"
let nWords = Regex.Matches(txt, pattern).Count
member _.FullName = filename
member _.Name = Path.GetFileName filename
member _.Count = nWords
Imports System.IO
Imports System.Text.RegularExpressions
Public Class WordCount2
Private filename As String
Private nWords As Integer
Private pattern As String = "\b\w+\b"
Public Sub New(filename As String)
If Not File.Exists(filename) Then
Throw New FileNotFoundException("The file does not exist.")
End If
Me.filename = filename
Dim txt As String = String.Empty
Dim sr As StreamReader = Nothing
Try
sr = New StreamReader(filename)
txt = sr.ReadToEnd()
Finally
If sr IsNot Nothing Then sr.Dispose()
End Try
nWords = Regex.Matches(txt, pattern).Count
End Sub
Public ReadOnly Property FullName As String
Get
Return filename
End Get
End Property
Public ReadOnly Property Name As String
Get
Return Path.GetFileName(filename)
End Get
End Property
Public ReadOnly Property Count As Integer
Get
Return nWords
End Get
End Property
End Class
For more information about the try
/finally
pattern, see Try...Catch...Finally Statement, try-finally, try...finally Expression, or try-finally Statement.
You should implement IDisposable if your type uses unmanaged resources directly or if you wish to use disposable resources yourself. The consumers of your type can call your IDisposable.Dispose implementation to free resources when the instance is no longer needed. To handle cases in which they fail to call Dispose, you should either use a class derived from SafeHandle to wrap the unmanaged resources, or you should override the Object.Finalize method for a reference type. In either case, you use the Dispose method to perform whatever cleanup is necessary after using the unmanaged resources, such as freeing, releasing, or resetting the unmanaged resources. For more information about implementing IDisposable.Dispose, see the Dispose(bool) method overload.
Important
If you are defining a base class that uses unmanaged resources and that either has, or is likely to have, subclasses that should be disposed, you should implement the IDisposable.Dispose method and provide a second overload of Dispose
, as discussed in the next section.
A base class with subclasses that should be disposable must implement IDisposable as follows. You should use this pattern whenever you implement IDisposable on any type that isn't sealed
(NotInheritable
in Visual Basic).
Dispose(Boolean disposing)
method.Dispose(true)
and should suppress finalization for performance.The following code fragment reflects the dispose pattern for base classes. It assumes that your type does not override the Object.Finalize method.
using System;
using System.IO;
using System.Runtime.InteropServices;
class BaseClass1 : IDisposable
{
// Flag: Has Dispose already been called?
bool disposed = false;
// Instantiate a FileStream instance.
FileStream fs = new FileStream("test.txt", FileMode.OpenOrCreate);
// Public implementation of Dispose pattern callable by consumers.
public void Dispose()
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
// Protected implementation of Dispose pattern.
protected virtual void Dispose(bool disposing)
{
if (disposed)
return;
if (disposing)
{
fs.Dispose();
// Free any other managed objects here.
//
}
disposed = true;
}
}
open System
open System.IO
type BaseClass1() =
// Flag: Has Dispose already been called?
let mutable disposed = false
// Instantiate a FileStream instance.
let fs = new FileStream("test.txt", FileMode.OpenOrCreate)
interface IDisposable with
// Public implementation of Dispose pattern callable by consumers.
member this.Dispose() =
this.Dispose true
GC.SuppressFinalize this
// Implementation of Dispose pattern.
abstract Dispose: bool -> unit
override _.Dispose(disposing) =
if not disposed then
if disposing then
fs.Dispose()
// Free any other managed objects here.
disposed <- true
Imports System.IO
Imports System.Runtime.InteropServices
Class BaseClass1 : Implements IDisposable
' Flag: Has Dispose already been called?
Dim disposed As Boolean = False
' Instantiate a FileStream instance.
Dim fs As FileStream = New FileStream("test.txt", FileMode.OpenOrCreate)
' Public implementation of Dispose pattern callable by consumers.
Public Sub Dispose() _
Implements IDisposable.Dispose
Dispose(disposing:=True)
GC.SuppressFinalize(Me)
End Sub
' Protected implementation of Dispose pattern.
Protected Overridable Sub Dispose(disposing As Boolean)
If disposed Then Return
If disposing Then
fs.Dispose()
' Free any other managed objects here.
'
End If
disposed = True
End Sub
End Class
If you do override the Object.Finalize method, your class should implement the following pattern.
using System;
class BaseClass2 : IDisposable
{
// Flag: Has Dispose already been called?
bool disposed = false;
// Public implementation of Dispose pattern callable by consumers.
public void Dispose()
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
// Protected implementation of Dispose pattern.
protected virtual void Dispose(bool disposing)
{
if (disposed)
return;
if (disposing)
{
// Free any other managed objects here.
//
}
// Free any unmanaged objects here.
//
disposed = true;
}
~BaseClass2()
{
Dispose(disposing: false);
}
}
open System
type BaseClass2() =
// Flag: Has Dispose already been called?
let mutable disposed = false
interface IDisposable with
// Public implementation of Dispose pattern callable by consumers.
member this.Dispose() =
this.Dispose true
GC.SuppressFinalize this
// Implementation of Dispose pattern.
abstract Dispose: bool -> unit
override _.Dispose(disposing) =
if not disposed then
if disposing then
// Free any other managed objects here.
()
// Free any unmanaged objects here.
disposed <- true
override this.Finalize() =
this.Dispose false
Class BaseClass : Implements IDisposable
' Flag: Has Dispose already been called?
Dim disposed As Boolean = False
' Public implementation of Dispose pattern callable by consumers.
Public Sub Dispose() _
Implements IDisposable.Dispose
Dispose(disposing:=True)
GC.SuppressFinalize(Me)
End Sub
' Protected implementation of Dispose pattern.
Protected Overridable Sub Dispose(disposing As Boolean)
If disposed Then Return
If disposing Then
' Free any other managed objects here.
'
End If
' Free any unmanaged objects here.
'
disposed = True
End Sub
Protected Overrides Sub Finalize()
Dispose(disposing:=False)
End Sub
End Class
Subclasses should implement the disposable pattern as follows:
Dispose(Boolean)
and call the base class Dispose(Boolean)
implementation.Dispose(false)
.Note that derived classes do not themselves implement the IDisposable interface and do not include a parameterless Dispose method. They only override the base class Dispose(Boolean)
method.
The following code fragment reflects the dispose pattern for derived classes. It assumes that your type does not override the Object.Finalize method.
using System;
using System.IO;
using System.Runtime.InteropServices;
class MyDerivedClass : MyBaseClass
{
// Flag: Has Dispose already been called?
bool disposed = false;
// Instantiate a FileStream instance.
FileStream fs = new FileStream("test.txt", FileMode.OpenOrCreate);
// Protected implementation of Dispose pattern.
protected override void Dispose(bool disposing)
{
if (disposed)
return;
if (disposing)
{
fs.Dispose();
// Free any other managed objects here.
//
}
// Free any unmanaged objects here.
//
disposed = true;
// Call base class implementation.
base.Dispose(disposing);
}
}
open Microsoft.Win32.SafeHandles
open System
type MyDerivedClass() =
inherit MyBaseClass()
// Flag: Has Dispose already been called?
let mutable disposed = false
// Instantiate a FileStream instance.
let fs = new FileStream("test.txt", FileMode.OpenOrCreate)
// Implementation of Dispose pattern.
override _.Dispose(disposing) =
if not disposed then
if disposing then
fs.Dispose()
// Free any other managed objects here.
// Free any unmanaged objects here.
disposed <- true
// Call base class implementation.
base.Dispose disposing
Imports System.IO
Imports System.Runtime.InteropServices
Class DerivedClass2 : Inherits BaseClass2
' Flag: Has Dispose already been called?
Dim disposed As Boolean = False
' Instantiate a FileStream instance.
Dim fs As FileStream = New FileStream("test.txt", FileMode.OpenOrCreate)
' Protected implementation of Dispose pattern.
Protected Overrides Sub Dispose(disposing As Boolean)
If disposed Then Return
If disposing Then
fs.Dispose()
' Free any other managed objects here.
'
End If
' Free any unmanaged objects here.
'
disposed = True
' Call base class implementation.
MyBase.Dispose(disposing)
End Sub
End Class
.NET feedback
.NET is an open source project. Select a link to provide feedback:
Training
Module
Control variable scope and logic using code blocks in C# - Training
Use code blocks with more confidence, understanding how they impact the visibility and accessibility of both higher and lower-level constructs in your code.